

ModelKinetix.com, a division of
Cherwell Scientific Limited

The Magdalen Centre
Oxford Science Park
Oxford OX4 4GA
United Kingdom 04/00

ModelMaker
Reference

End user license agreement

iii ModelMaker

1. LICENSE
1.1. Cherwell Scientific Limited of The Magdalen Centre, Oxford

Science Park, Oxford OX4 4GA (“Cherwell”) hereby grants you a
non-exclusive license (“License”) to use the software
accompanying this license (“Software”) and the accompanying
documentation on the following terms.

1.2. The copyright and all other rights in the Software and the
accompanying documentation remain with Cherwell.

2. ACCEPTANCE
2.1. You are deemed to accept the terms of this License if you install the

Software on a computer.
2.2. If you do not wish to accept these terms, you must within 30 days

of purchase erase any installation file, and any copy of the
Software and documentation you have downloaded or stored on
any medium and return any copies of the CD, manuals and
packaging to Cherwell together with proof of purchase for a full
refund.

3. SCOPE OF LICENSE
3.1. This License permits you to:

3.1.1. use the Software on a single computer or on a networked
computer drive;

3.1.2. transfer the Software to someone else, provided that you
assign all of your rights and obligations under this License to
such other person, you erase all copies of the Software under
your control and stored on any medium (including the hard
disk copy and any backup copy), and the other person
agrees to the terms of this License;

3.1.3. make one copy of the Software for back-up purposes only,
which copy must reproduce and include this License in full.

3.2. You shall not:
3.2.1. use or copy the Software other than as permitted by this

License;
3.2.2. at any time allow more users than stated in your sales

invoice to access or use the Software concurrently;
3.2.3. modify, adapt, merge, translate, decompile, disassemble, or

reverse engineer the Software, except as permitted by law;
3.2.4. use, sell, assign, rent, sub-license, loan, mortgage, charge or

otherwise deal in any way in the Software or the
accompanying documentation or any interest in them or
under this License except as expressly provided in this
License.

End User License
Agreement

End User License Agreement

 ModelMaker iv

4. TERM
4.1. Unless terminated under clause 4.2 this License shall last for as long

as you continue to use the Software.
4.2. This License shall terminate automatically if you fail to abide by any

of its terms.
4.3. Upon termination of this License you shall destroy the Software and

its accompanying documentation and shall erase all copies of the
Software under your control and stored on any medium (including
the hard disk copy and any backup copy).

5. WARRANTIES AND REMEDIES
5.1. Cherwell warrants that the storage media on which the Software is

supplied will be free from defects in materials and workmanship
under normal use for a period of 90 days after the date of original
purchase. If a defect in any disk occurs during such period you
may return it with proof of purchase to Cherwell who will replace
it free of charge.

5.2. Cherwell warrants that the Software will perform substantially in
accordance with its accompanying documentation (provided that
the Software is properly used on the computer and with the
operating system for which it was designed) and that the
documentation correctly describes the operation of the Software in
all material respects. If Cherwell is notified of any material error
in the Software during the period of 90 days after the date of
original purchase it will correct any such error within a reasonable
time or (at its option) refund the price of the Software (against
return of the Software and its documentation).

5.3. The warranties set out in clauses 5.1 and 5.2 are your sole
warranties and are in place of all warranties conditions or other
terms expressed or implied by statute or otherwise, all of which
are hereby excluded to the fullest extent permitted by law. Clauses
5.1 and 5.2 also set out your sole remedies for any breach of
Cherwell's warranties.

5.4. In particular Cherwell does not warrant that the Software will meet
your requirements or that the operation of the Software will be
uninterrupted or error free or that all errors in the Software can be
corrected. You load and use the Software at your own risk and in
no event will Cherwell be liable to you for loss or damage of any
kind (except personal injury or death resulting from Cherwell's
negligence), including lost profits, consequential or other loss
arising from the use of or inability to use the Software or from
errors or deficiencies in it whether caused by negligence or
otherwise, in excess of 125% of the price paid for the Software,
except as expressly provided in this License.

5.5. If you deal as a consumer as defined in the Unfair Contract Terms
Act 1977, your statutory rights remain unaffected.

End user license agreement

ModelMaker v

6. SUPPORT
Cherwell’s technical support staff will endeavour to answer any queries you
may have about the Software. Support contact details are given in the
Schedule.
7. LAW
This License constitutes the entire agreement between you and Cherwell
relating to the Software and is governed by and construed in accordance
with the laws of England. The courts of England shall have exclusive
jurisdiction.

SCHEDULE

Technical support is available directly from the ModelKinetix web site at
http://www.modelkinetix.com/support. Our web support database is
constantly updated and we strongly urge you to explore the support options
here before calling us.

In the unlikely event that you cannot find your answer on our web support
database, please call our UK office directly on +44 (0)1865 784800 between
the hours of 9.30 and 17.30 UK time Monday to Friday inclusive (excluding
UK public holidays). Telephone calls will be logged in our support system
and you will be contacted by e-mail, fax, or telephone with a solution or a
request for more information.

E-mail support queries should be sent to support@modelkinetix.com.

Important information

ModelMaker vii

© 2000 Cherwell Scientific Ltd
All rights reserved. No part of this publication or the program
ModelMaker may be reproduced, transmitted, transcribed, stored in
a retrieval system, or translated into any language or computer
language in any form or by any means electronic, mechanical,
magnetic, optical, chemical, manual, biological or otherwise, without
prior written permission of the publisher.

ModelMaker is published by:Cherwell Scientific Limited
The Magdalen Centre
Oxford Science Park, Oxford OX4 4GA

Cherwell Scientific Ltd make no representations or warranties with
respect to the contents hereof and specifically disclaims any implied
warranties of merchantability or fitness for any particular purpose.

All trademarks and registered trademarks are the property of their
respective companies

For technical support, Frequently Asked Questions (FAQs) or
product information, please visit our web site at:

http://www.modelkinetix.com

Technical support is available directly from the ModelKinetix.com
web site at http://www.modelkinetix.com - simply follow the links to
Support.

Our Web support database is constantly updated and we strongly
urge you to explore the support options here before calling us. In the
unlikely event that you cannot find your answer, then please e-mail
us (support@modelkinetix.com) or call our UK office on +44 (0)1865
784800 during normal office hours. Telephone calls will be logged in
our support system and you will be contacted subsequently with a
solution or request for more information by e-mail, fax, or phone.

Copyright

Publisher

Disclaimer

Trademarks

ModelKinetix.com
web site

Technical
Support

Contents

ModelMaker ix

Contents

1. INTRODUCTION... 1
INTERFACE GUIDE... 1
MATHEMATICAL REFERENCE... 1

2. INTERFACE REFERENCE GUIDE ... 3
MODELMAKER WINDOW OVERVIEW .. 3
QUICK REFERENCE GUIDE.. 4
TOOLBARS - THE MAIN VIEW .. 4
TOOLBARS - OTHER VIEWS .. 7
THE DIAGRAM - ICONS.. 8
DIALOGS.. 8
SELECTING COMPONENTS ... 19
SCROLLING THE MODEL DIAGRAM ... 19
KEYBOARD SHORTCUTS ... 20
SELECTING PARAMETERS.. 22
MODEL COMPONENT SHADING ... 22
MOVING AROUND AND SELECTING TABLE CELLS 23

3. MODELMAKER ARITHMETIC.. 25
OVERVIEW ... 25
EQUATIONS.. 25
CONDITIONS .. 26
INITIAL VALUES OF COMPARTMENTS .. 27
NUMERICAL ACCURACY .. 28
FUNCTIONS .. 28
MATHEMATICAL FUNCTIONS IN MODELMAKER 28

4. INTEGRATION METHODS ... 31
OVERVIEW ... 31
BOUNDARY CONDITIONS... 31
EULER'S METHOD ... 32
MID-POINT METHOD ... 33
RUNGE-KUTTA METHOD ... 33
BULIRSCH-STOER METHOD ... 35
GEAR’S METHOD .. 35
STEP LENGTH CONTROL AND ACCURACY CRITERIA 36
CHOICE OF METHOD ... 40
STARTING STEP LENGTH ... 41

5. INTERPOLATION IN LOOKUP FILES AND TABLES 43

Contents

 ModelMaker x

OVERVIEW .. 43
RULE METHODS .. 44
LINEAR INTERPOLATION ... 45
POLYNOMIAL INTERPOLATION... 45
RATIONAL FUNCTION INTERPOLATION ... 46
CHOICE OF INTERPOLATION METHOD... 46

6. OPTIMIZATION.. 49
OVERVIEW ... 49
OPTIMIZATION DEFINED.. 50
OPTIMIZATION AS MINIMIZATION OF DEVIATION..................................... 50
OPTIMIZATION RECIPE .. 52
CONVERGENCE CRITERIA .. 52
PARAMETER CONSTRAINTS ... 53
OPTIMIZATION TERMINATION.. 53
ASSUMPTION OF NORMALITY .. 54
OPTIMIZATION STATISTICS.. 54
OPTIMIZATION GUIDELINES... 57
PARAMETER ESTIMATION ... 58

7. HANDLING DLL FUNCTIONS .. 61
DLL FUNCTION INTERFACE .. 61
FUNCTION PROTOTYPE ... 62
EXPORTING THE FUNCTION... 62
FUNCTION PARAMETERS ... 63
FUNCTION RETURN VALUE ... 64
FUNCTION INFORMATION.. 65

8. USING EVENT ACTIONS... 67
MESSAGE TEXT FORMATTING ... 67
EVALUATEFUNCTION ... 69
EVENTACTIVATE ... 69
EVENTDEACTIVATE.. 69
EVENTPROCESS.. 70
EVENTQUERY .. 70
GETCHOICE ... 71
GETFILENAME ... 72
GETPAGE... 72
GETVALUE .. 73
INITIALIZE ... 74
INITIALIZEALL ... 75
MESSAGE... 75
MODELEXIT... 76
MODELSTOP .. 76

Contents

ModelMaker xi

QUERYPAGE .. 77
SETPAGE ... 77
SETFILENAME.. 77
TRACEMESSAGE... 78
TRACEOFF ... 78
TRACEON .. 79

APPENDIX: INTRODUCTION TO MARQUARDT AND SIMPLEX
THEORY... 81

MARQUARDT THEORY .. 81
THE SIMPLEX METHOD .. 84

INDEX... 87

Chapter 1

Introduction 1

1. Introduction
This manual provides a reference guide to using the ModelMaker
application. There are two main sections:

Interface guide

The Interface guide (Chapter 2) provides a detailed description of the
ModelMaker interface; toolbars, menus, dialogs and available
shortcuts. You will find when using the software that there are often
different ways of achieving the same result – allowing you to work in
the way you choose.

Mathematical reference

The remaining chapters provides background information on the
mathematical methods used by ModelMaker. This includes
arithmetic, integration and interpolation methods, optimization,
minimization and analysis methods. In most cases this is only an
introduction and users are referred to standard texts and original
papers for detailed descriptions.

Chapter 2

Interface guide 3

2. Interface Reference Guide

ModelMaker window overview

The ModelMaker window comprises two panels. On the left is the
Model Explorer, on the right is the Model View. Selecting a view on
the Model Explorer shows that view on the right. It is possible to
work on several models at one time, each model being displayed in
its own model window. You may view these in the manner common
to Windows applications using the Windows menu: cascade and
tiled.

Two toolbars are in view at any one time.

• The main toolbar comprises icons for functions that can be
used at any time during use

• The view dependent toolbar that changes according to the
view currently on display. For example if you are viewing a
graph then the Graph toolbar is on display

The View menu includes a ‘Toolbar’ command with a sub-menu
for customizing this view dependent toolbar. You cannot change
the appearance of the main toolbar.

Toolbars are dockable and can be rearranged by clicking and
dragging on the left hand side. To make toolbars floating
windows drag away from the toolbar panel. Re-dock by dragging
back to the panel.

These are as follows:

• File: common file utility commands

• Edit: common editing commands

• View: commands pertaining to model views

• Component: select component type to add to model,
Evaluation Order and Format open the relevant dialogs and

Main window

Toolbars

Menus

Chapter 2

 Interface guide 4

the Align sub-menus allow arrangement of selected
components

• Model: all commands relating to Model run and analysis
functions

• Windows: common window utility commands

• Help: open the Help file, Tip of the day, About box
(ModelMaker version number and licensing) and links to the
ModelMaker web site

In addition right mouse button (RMB) menus provide commands
in context with the currently displayed view or selected model
component.

ModelMaker provides comprehensive on-line help and context
sensitive help for all views and dialogs. The ‘?’ button provides pop-
up help for individual functions in dialogs. To use this

• Click the ? icon in the main toolbar, or in the top right of the
dialog

• Click on the item you wish to know more about

In addition pressing F1 opens the main help file at the
appropriate topic.

Quick reference guide

The following sections provide a guide to all of the features of the
ModelMaker interface including the use of keyboard shortcuts.

Toolbars - the Main view

Two toolbars are available. The Main Toolbar which is always in
view and the View Toolbar which changes depending on the current
ModelMaker view on display. You can customize the View Toolbars
using the Customize feature (opened from the
View|Toolbars|Customize menu command) by adding or removing

ModelMaker Help

Chapter 2

Interface guide 5

command buttons from the toolbars. Details of the View toolbars are
shown below.

Icon Command

 Open new model.

 Open existing model.

 Save model to disk.

 Cut selected components or text to clipboard.

 Copy selected components to clipboard.

 Paste from clipboard.

 Create new graph - opens graph selection dialog box.

Create new histogram (for results of Monte Carlo run) –
opens the Histogram selection dialog.

 Create new table - opens table selection dialog box.

 Run active model.

 View parameters. Create new or edit existing parameters.

 Select component. Click & drag to select multiple
components.

 Compartment. A compartment represents an integrator
in a model.

 Variable. Variables hold values which are calculated as
the model is run.

Chapter 2

 Interface guide 6

Icon Command

 Defined Value: a constant value calculated at the start of
a model run.

 Flow – represents movement between compartments.

 Influence. Influences represent relationships between
model components.

 Delay. Use to hold the value of another component for a
defined period.

 DLL. Allows models to be connected to external
functions - Windows DLL modules.

 Group components accomplishing a particular function
as a sub-model.

 Input. Use to transfer data from main model to sub-
model.

 Output. Use to transfer data from sub-model to main
model.

 Look-up Table. Use to enable real data to help define the
model.

 Look-up File. Links model to data in external file for
look-up function.

 Independent Event. Event triggered by independent
variable.

 Component Event. Event triggered by values of
components.

 Text Box. Use to annotate model diagrams, add graphics
or both.

Chapter 2

Interface guide 7

Toolbars - other views

Icon Command

 Selection. Use to select component to include on graph or
table.

 Series. Edit the attributes of the series displayed in active
graph, table/model data view.

 Insert new row or rows into table of experimental model
data.

 Delete row or rows from table of experimental model data.

 Insert new column or columns into table of model data.

 Delete column or columns from table of model data.

Icon Command

 Attributes. Title, legend and frame attributes of currently
active graph.

 Change X-axis characteristics for currently active graph.

 Change Y-axis characteristics for currently active graph.

 Adds new parameter to model.

Adds new sample point to model.

Table View

Graph/Histogram
View

Parameters View

Sample Points
View

Chapter 2

 Interface guide 8

The Diagram - icons

Iconized text box. Double click to open.

Use Model Options (Diagram) dialog to select whether
icon opens read-only text box or text box definition dialog.

Dialogs

In this section we list the ModelMaker dialog boxes.

Note that component definition dialogs have many things in
common, including:

• A Bitmap panel for importing a graphic to enhance your
model display

• An Information panel allowing you to add useful
explanatory notes

• A list of available components whose values may be used
in a defining equation

• A list of ModelMaker functions that may be used in a
defining equation or in the case of event action
ModelMaker commands and logical expressions

• A set of filters for selecting the components and functions
to be displayed in the lists

If you make a mistake in defining a component, or use the symbol for
an as yet undefined component or parameter ModelMaker will warn
you but allow you to continue if you wish. You can switch off this
warning message by clearing ‘Quiet Model Editing’ in User
Preferences (Edit menu). Several dialogs have two or three tabbed
panels. To open the individual panel, click on the tab at the top of the
dialog

Chapter 2

Interface guide 9

Dialog. To open… . Description

About
ModelMaker

Select Help|About
menu command.

Displays ModelMaker
version and license
information.

Add Password
Protection

Select
File|Password
Protection.

Enter a password that must
be entered when opening the
model.

Change Page Select Change
Page… from RMB
menu on data
sheet in Model
Explorer.

Add a new name for a data
sheet.

Component
Event Definition
(Trigger tab)

Double click
Component Event.

Define the event trigger in
terms of the value of a model
component.

Component
Format (Format
tab)

Select Component
Format from the
RMB menu on any
component.

Set line color and thickness
and text alignment for
individual components.

Component
Format (Format
tab)

Select Component
Format from the
RMB menu on any
component.

Set font attributes for
individual components.

Component
order

Select Evaluation
Order from the
Component menu.

Set the order in which
Events and DLL functions
are evaluated during a
model run.

Conditional
Compartment
Definition

Click Conditional
in Unconditional
Compartment
Definition.

Lists series of conditions and
equations for Compartment.

Chapter 2

 Interface guide 10

Dialog. To open… . Description

Conditional
Equation
Definition

Click New or
Change in
Conditional
component
definition.

Define condition and
corresponding equation for
Conditional Component.

Debug
Information

Select Debug
Information from
Model menu. (you
must have Collect
Debug
information
selected in User
preferences dialog
and have run the
model).

Lists debugging information.

Delay Definition
(Definition Tab)

Double click
Delay.

Define a delay in terms of a
symbol, the component
whose value is to be
delayed, an initial value and
the maximum delay.

Distribution Click the ‘… ’
button in the
Parameters view
when Monte Carlo
is selected for a
parameter.

Select the distribution type
and add distribution
characteristics for Monte
Carlo analysis.

DLL Definition
(DLL tab)

Double click a
DLL component.

Define a DLL symbol, the
path to the DLL file and the
name of the function being
called. You can also define
the function type.

Chapter 2

Interface guide 11

Dialog. To open… . Description

DLL Definition
(Values tab)

Double click a
DLL component.

Lists input values (equations
or model component values
passed to the DLL) and
output values (as symbols
that may be accessed by
other model components.

DLL Function
Input Value
Definition

Click New… or
Change… on DFF
definition Values
tab.

Define an Input Value for a
DLL as an equation or model
component value.

Event Definition
(Actions tab)

Double click
Independent or
Component Event.

Define the actions (using
ModelMaker script
commands) that will occur
when the event is triggered.

Event Definition
(Definition tab)

Double click
Independent or
Component Event.

Define the Event symbol,
status and class.

File Format
Definition

Click File
Format… on
Lookup File
Definition or
Import File dialog.

Configure data file used as
lookup or model data.

Find
Component

Select Edit|Find
Component.

Select component to locate
on the model (useful when
editing large models).

Global
Sensitivity
Results

Click Series
Statistics in the
Histogram series
dialog.

Displays Global Sensitivity
Results after a Monte Carlo
run.

Graph
Attributes
Configuration
(General tab)

Click the
Attributes icon on
the Graph
Toolbar.

Set the background and
frame colors for the graph.

Chapter 2

 Interface guide 12

Dialog. To open… . Description

Graph
Attributes
Configuration
(Legend tab)

Click the
Attributes icon on
the Graph
Toolbar.

Add the legend text, set text
characteristics and position.

Graph
Attributes
Configuration
(Title tab)

Click the
Attributes icon on
the Graph
Toolbar.

Add the title and set text
characteristics and position.

Graph Selection Click Graph icon
on the Main
toolbar (creates a
new graph) or
click the Selection
icon on the Graph
toolbar (changes
the current graph).

Select components whose
values are to be displayed on
the graph.

Graph Series Click the Series
icon on the Graph
toolbar.

Configure the model and
data series (line
color/thickness etc.) to be
displayed on the graph.

Histogram
Selection

Click the
Histogram icon on
the Main toolbar
(create new
histogram) or click
the Selection icon
on the Histogram
toolbar (change
current
histogram).

Select sample points to
display on the histogram.
Define the number of
columns in which to display
the data.

Independent
Event Definition
(Trigger tab)

Double click
Independent
Event, click
Triggers tab.

Define the event as period,
non-periodic or both.

Chapter 2

Interface guide 13

Dialog. To open… . Description

Insert/Delete Select Insert or
Delete cells…
from the RMB in
the Model Data
view.

Choose how to handle
insertion or deletion of cells
when data is already present
in the view.

License Control
Dialog

Click Licensing…
in the About
ModelMaker
dialog.

To fully activate your copy
of ModelMaker contact us
with the two User Codes
and then enter the activation
codes we give you.

Lookup File
Definition
(Definition tab)

Double click
Lookup File.

Define the Symbol and the
path to the lookup file.

Lookup File
Definition
(Series tab)

Double click
Lookup File.

Define the data series in the
lookup table either (as a
control or a controlled
series) and the method of
interpolation.

Lookup Table
Definition
(Definition Tab)

Double click
Lookup Table.

Define the lookup Symbol,
create or open the Table
View and set the active page
if several pages of data are
available.

Lookup Table
Definition
(Series Tab)

Double click
Lookup Table.

Define the data series in the
lookup table either (as a
control or a controlled
series) and the method of
interpolation.

Minimization
Configuration

Select
Model|Configure
|Minimization or
click Advanced on
the Start
Minimization
dialog.

Define constraint ranges and
convergence settings for the
minimization process.

Chapter 2

 Interface guide 14

Dialog. To open… . Description

Model Data
Series Definition

Click the Series
icon in the Model
data toolbar.

Defines model data series
i.e., relates data to model
components.

Model Options
(Diagram tab)

Select
Model|Options
menu command.

Set default line thickness and
color for model diagram.
Toggle Snap-to-Grid for
drawing alignment and size
of grid.

Model Options
(Font tab)

Select
Model|Options
menu command.

Select the default model font
and style.

Model Options
(Symbols tab)

Select
Model|Options
menu command.

Define Symbols for the
independent and iterator
variables.

Monte Carlo
Run

Select
Model|Monte
Carlo menu
command.

Confirm Monte Carlo set up
and start the run. Enter the
number of trials to run.

Non-periodic
Event Trigger
Definition

Click New… or
Change… under
Non-periodic
Triggers in
Independent
Event Definition,
Triggers tab.

Define or edit a non-periodic
trigger for an independent
event.

Optimization
Run

Select
Model|Optimize.

Select Optimization method,
error weighting and error
estimation. Start the
optimization.

Chapter 2

Interface guide 15

Dialog. To open… . Description

Optimization
Settings
(Estimation tab)

Select
Model|Configure
|Optimization
menu or click
Advanced from
the Optimization
Run dialog.

Configure initial parameter
estimation range and
method (Grid Search or
Simulated Annealing).

Optimization
Settings
(Optimize tab)

Select
Model|Configure
|Optimization
menu or click
Advanced from
the Optimization
Run dialog.

Configure optimization
convergence and Marquardt
settings Define a constraint
equation (may include
several parameters).

Optimization
Settings
(Weighting tab)

Select
Model|Configure
|Optimization
menu or click
Advanced from
the Optimization
Run dialog.

Configure data weighting
and error ranges for
optimization.

Parameter
Definition
(Constraints
tab)

Double click
parameter in
Parameters view.

Define constraint ranges for
parameters (limits values
parameters may take during
optimization/minimization
runs).

Parameter
Definition
(Definition tab)

Double click
parameter in
Parameters view.

Define parameter Symbol
and value. X, Y and Z panels
become active when defining
arrays.

Parameter
Definition
(Estimation tab)

Double click
parameter in
Parameters view.

Define ranges for parameter
estimation during
optimization.

Password Entry Opens
automatically.

Enter the correct password
to open the model.

Chapter 2

 Interface guide 16

Dialog. To open… . Description

Reference
Definition
(parent view)

Double click
Reference.

Define the Symbol for the
reference.

Reference
Definition (sub-
model view)

Double click the
reference.

Define a Symbol and arrow
position for the link in the
sub-model view.

Rename model
Component

Opens
automatically
when you paste a
model component
onto the same
model level.

Prompts user to rename a
model component.

Run Select
Model|Integrate
menu command
or click Go.

Confirm Start/Stop values
for independent variable,
select repeated run and start
the model run.

Run Options
(Integration tab)

Select
Model|Configure
|Integration menu
command or click
Advanced on Run
menu.

Select and configure
integration method and
error scaling.

Run Options
(Repeated Run
Settings tab)

Select Configure
|Integration menu
command or click
Advanced on Run
menu.

Configure the repeated run
or sensitivity analysis.

Run Options
(Repeated Run
tab)

Select
Model|Configure
|Integration menu
command or click
Advanced on Run
menu.

Set the number of repeated
runs to perform and the
components to be included.

Chapter 2

Interface guide 17

Dialog. To open… . Description

Sample Point
Definition

Double click a
sample point on
the Sample Point
view.

Define a Name, Time Point
and component for the
sample point (used in Monte
Carlo and Minimization).

Start
Minimization

Select
Model|Minimize
menu command.

Confirm minimization set up
and start the minimization.

Sub-model
Definition
(Definition tab)

Click sub model
with RMB and
select Sub-Model
definition.

Define Symbol and a
description for the Sub-
model.

Table Selection Click the Table
icon on the Main
toolbar (create
new table) or click
the Selection icon
on the table
toolbar (change
current table).

Select components whose
values are to be displayed on
the table.

Table Series Click the Series
icon on the Table
toolbar.

Configure the numeric
format and the column titles
of model series displayed.

Text Box
definition

Double click text
Box.

Enter text to enhance your
model. text box may also be
iconized to save space.

Tip of the Day Select Help|Tip of
the Day menu or
can open at start
up.

Displays a helpful hint for
using ModelMaker.

Toolbar
Customization

Select
View|Toolbar
|Customize…

Add or remove command
icons from View toolbars.

Chapter 2

 Interface guide 18

Dialog. To open… . Description

Unconditional
Compartment
Definition
(Definition tab)

Double click
Compartment.

Define Symbol, Equation
and initial value for
Compartment.

Unconditional
Defined Value
Definition
(Definition tab)

Double click
Defined Value.

Define symbol and equation
for a Defined Value

User
Preferences
(General tab)

Select User
Preferences from
the Edit menu.

Toggle a number of options
controlling how you work
with ModelMaker e.g. quiet
editing mode, undo levels
and user warnings.

User
Preferences
(Output tab)

Select User
Preferences from
the Edit menu.

Define report file names and
levels of active tracing when
debugging.

Variable
Definition

Double click a
variable.

Enter an equation to be
calculated at every time step
during the model run.

View Data Click View Data
on Lookup File
Definition or on
File Format dialog.

View data or text file
imported into ModelMaker.

X or Y-Axis
Configuration
(Format tab)

Click the X or Y-
axis icon on the
Graph toolbar.

Configure the X-axis scale
and grid lines.

X or Y-Axis
Configuration
(Title tab)

Click the X or Y-
axis icon on the
Graph toolbar.

Add the title, position and
font style for the axis title.
For the Y axis also select to
display vertical text.

X-or Y Axis
Configuration
(Labels tab)

Click the X or Y-
axis icon on the
Graph toolbar.

Configure the numeric
format and font style for the
axis labels.

Chapter 2

Interface guide 19

Selecting components

Mouse action Effect

Mouse click on
unselected component.

Component selected, all other
components de-selected.

SHIFT + mouse click
on unselected
component.

Component is selected, any existing
selection remains.

SHIFT + mouse click
on selected component.

Component is de-selected, any
existing selection remains.

Drag area. All components inside the drag area
selected, all other components de-
selected.

SHIFT + drag area. All components inside the drag area
selected, any existing selection
remains.

Mouse click outside
component and
selection area.

All components de-selected.

Scrolling The Model Diagram

Key Effect

UP-ARROW or
DOWN-ARROW

One line up or down.

Chapter 2

 Interface guide 20

LEFT-ARROW or
RIGHT-ARROW

One column left or right.

PAGE-UP or PAGE-
DOWN

One page up or down.

SHIFT-LEFT ARROW
or SHIFT-RIGHT
ARROW

One page left or right.

HOME or END To the top or bottom of the diagram.

CTRL-LEFT ARROW
or CTRL-RIGHT
ARROW

To the extreme left or right of the
diagram.

CTRL-HOME To the top left corner of the
diagram.

CTRL-END To the bottom right corner of the
diagram.

Keyboard Shortcuts

Key
combination

Effect

Ctrl + Z Undo. Will also undo actions within dialog
boxes. Set undo level in Model Options
(Diagram) dialog box.

Ctrl + Y Redo.

Ctrl + X Cut selection to clipboard.

Ctrl + C Copy selection to clipboard.

Chapter 2

Interface guide 21

Ctrl + V Paste from clipboard into current model.

Del Delete selected component(s).

Ctrl + L View top level model (main).

Ctrl + N View parent model - from sub-model view.

Ctrl + G Create new graph, opens Graph Selection
dialog box.

Ctrl + T Create new table, opens Table Selection dialog
box.

Ctrl + D View definitions.

Ctrl + P View Parameters.

Ctrl + + Zoom in.

Ctrl + - Zoom out.

Chapter 2

 Interface guide 22

Selecting Parameters

Before a parameter may be defined or edited it must be selected:

Mouse/Key combination Effect

Mouse click on unselected
parameter or parameter
array range.

Parameter or range selected; all
others de-selected.

SHIFT + mouse click on
unselected parameter or
parameter array range.

Parameter or range is selected;
any existing selection remains.

SHIFT + mouse click on
selected parameter or
parameter array range.

Parameter or range is de-
selected; any existing selection
remains.

Mouse click outside
parameter or parameter
array range.

All Parameter and ranges de-
selected.

Model component shading

Shading Interpretation

Blue diagonal lines Component is empty - model will
not run.

Green diagonal lines The component is global.

Green cross hatching The component is universal.

Red cross-hatching Component is in error - model will
not run.

Chapter 2

Interface guide 23

Moving around and selecting table cells

Key/combination Effect

Arrow key Moves in the direction of the
arrow by one cell.

SHIFT+ARROW Extends the selection by one cell.
CTRL+RIGHT ARROW Moves right one screen.
CTRL+SHIFT+RIGHT
ARROW

Extends the selection right one
screen.

CTRL+LEFT ARROW Moves left one screen.
CTRL+SHIFT+LEFT
ARROW

Extends the selection left one
screen.

HOME Moves to the beginning of the
row.

SHIFT+HOME Extends the selection to the
beginning of the row.

CTRL+HOME Moves to the top left hand corner
of the page.

CTRL+SHIFT+HOME Extends the selection to top left
hand corner of page.

END Moves to the end of the row.
SHIFT+END Extends the selection to the end of

the row.
CTRL+END Moves to the bottom right hand

corner of the page.
CTRL+SHIFT+END Extends selection to bottom right

hand corner of page.
PAGE DOWN Moves down one screen.
PAGE UP Moves up one screen.

Using the
Keyboard

Chapter 2

 Interface guide 24

Key/combination Effect

SHIFT+PAGE DOWN Extends the selection down one
screen.

SHIFT+PAGE UP Extends the selection up one
screen.

DELETE Deletes the contents of the
selected cells.

Action Effect

Click on a cell Moves selection to a cell.
SHIFT + Click on a cell Extends the selection to the cell.
Drag to another cell Extends the selection to the cell.
Click on a row marker Selects the row.
SHIFT + Click on a row
marker

Extends the selection to the row.

Drag to another row
marker

Extends the selection to the row.

Click on a column
header

Selects the column.

SHIFT + Click on a
column header

Extends the selection to the
column.

Drag to another column
header

Extends the selection to the
column.

Using the Mouse

Chapter 3

ModelMaker arithmetic 25

3. ModelMaker Arithmetic

Overview

This chapter defines ModelMaker arithmetic, its numerical accuracy,
numerical and logical operations that are allowed and the
mathematical functions provided.

Equations

Each model component has an equation defined by the user.
ModelMaker equations may contain:

• Numerical values, in either fixed-point format (e.g. 13.567) or
scientific notation (e.g. 1.23E+6).

• Symbols representing components within the model. These must
be either global or linked via an influence or flow.

• Symbols representing parameters in the model.

• Arithmetic operators: + (addition), - (subtraction), *
(multiplication), / (division), ^ (raising to a power).

• Mathematical functions defined within ModelMaker (e.g. cos()).
See below for details.

• Brackets () to control evaluation precedence in an equation or to
specify the arguments of a function.

ModelMaker equations are intended to be as intuitive as possible and
follow normal mathematical conventions. Equations are entered on a
single line and use a restricted character set typical of those used by
computers.

The order in which ModelMaker evaluates an equation follows strict
rules of precedence, as follows:

Chapter 3

 ModelMaker arithmetic 26

When two operations of equal precedence appear in an equation they
are evaluated from left to right.

Conditions

In addition to normal arithmetical equations ModelMaker supports
Boolean relationships i.e., those that produce a TRUE or FALSE
result. These are called conditions and are used in conjunction with
conditional components and component events.

Conditions use relational operators which yield a TRUE or FALSE
result depending on the relative magnitudes of two numeric values.
In the table below, x and y represent symbols or numerical values.

Operator Result

x < y TRUE if x is less than y

x > y TRUE if x is greater than y

x <= y TRUE if x is less than or equal to y

x >= y TRUE if x is greater than or equal to y

x = y TRUE if x equals y

x <> y TRUE if x is not equal to y

Precedence Operation

1 Expressions in brackets (........)

2 Functions and negatives (-1)

3 Powers (x^y)

4 Multiplication (*), division (/)

5 Addition (+), subtraction (-)

Chapter 3

ModelMaker arithmetic 27

If a relational operator does not give a TRUE result then the result is
FALSE. No other result is possible.

Relational operators cannot be used to produce compound
conditions. This can only be accomplished using logical operators.
These have operands which are not numerical values, but Boolean
values, either TRUE or FALSE. The logical operators are given below;
op1 and op2 represent relational expressions using the above
relational operators and yielding a result which is either TRUE or
FALSE.

Operator Result

op1 and op2 TRUE if both op1 and op2 are TRUE

op1 or op2 TRUE if either op1 or op2, or both are TRUE

op1 xor op2 TRUE if either op1 or op2 is TRUE, but FALSE if
they are both TRUE

not op1 TRUE if op1 is FALSE

As with the relational operators if the result of a logical expression is
not TRUE, it is FALSE.

Initial values of compartments

Compartments are described by differential equations which
ModelMaker solves by initial value methods. Consequently
compartments require initial values to be defined by the user. Initial
value may be an equation, although in many cases the equation is
simply a constant numeric value. For example, the default expression
for a compartment's initial value is 0.0. This can be changed to a
symbolic equation that conforms to the above rules; the only
limitation is that the equation must be evaluated before a model step
is taken. It can therefore only use symbols whose values are known at
the beginning of a run. This limits it to parameters, defined values
and lookup symbols controlled by the independent variable.

Chapter 3

 ModelMaker arithmetic 28

Numerical accuracy

ModelMaker uses 8-byte reals for all its arithmetic operations.

• The smallest value that can be computed is 1.7×10-308. Any
operation that results in a smaller number gives a result of zero.

• The largest value that can be computed is 1.7×10308. Any operation
that results in a number greater than this produces an error
message.

• All calculations maintain numerical accuracy to the first 15
significant digits.

Functions

ModelMaker supports a library of standard mathematical functions.
The syntax for using these functions in equations is very
straightforward: you simply enter the function name and the function
argument(s) in brackets. An argument is a value acted upon by the
function. If required this can be an expression, in which case it is
evaluated before being passed to the function.

The Available Functions list box in the various component definition
dialog boxes lists all the functions that ModelMaker provides along
with their syntax.

If the result of a function cannot be calculated then the model run
halts and an error message is presented telling you which function
has failed.

Mathematical functions in ModelMaker

The following table lists the mathematical functions available when
constructing equations and conditions in ModelMaker.

Function Remarks

abs(x) Calculates the absolute value of x.

Chapter 3

ModelMaker arithmetic 29

Function Remarks
arccos(x) Calculates the principle angle (in radians) whose cosine

is x. The argument x must be in the range -1 to +1
otherwise the function fails.

arccosh(x) Calculates the inverse hyperbolic cosine of x. If x < 1, the
function fails.

arcsin(x) Calculates the principal angle (in radians) whose sine is
x. The argument x must be in the range -1 to +1
otherwise the function fails.

arcsinh(x) Calculates the inverse hyperbolic sine of x.

arctan(x) Calculates the principle angle (in radians) whose tangent
is x. The argument x must be in the range -1 to +1
otherwise the function fails.

arctanh(x) Calculates the inverse hyperbolic tangent of x. If x <= 1
or x >= -1, the function fails.

cos(x) Calculates the cosine of x, which is assumed to be an
angle in radians.

cosh(x) Calculates the hyperbolic cosine of x.

deg(x) Converts the value x in radians to degrees.

x div y Calculates the number of times x is completely divisible by y.

exp(x) Calculates the value ex. If x > 709.7827, the function fails.

fact(x) Calculates the factorial of the integer part of x.

frac(x) Returns the fractional part of x i.e. frac(1.2345) = 0.2345.

ln(x) Calculates the natural logarithm of x. If x < 0, the
function fails.

log(x) Calculates the logarithm to base 10 of x. If x < 0, the
function fails.

max(x1, x2, ...) Returns the maximum value from the list x1, x2, …

min(x1, x2, ...) Returns the minimum value from the list x1, x2, …

Chapter 3

 ModelMaker arithmetic 30

Function Remarks
x mod y Calculates the remainder when x is divided by y.

rad(x) Converts the value x in degrees to radians.

rand(x, y) Generates a series of random numbers uniformly
distributed between x and y.

randn(x, y) Generates a series of random numbers with a mean of x
and a standard deviation of y.

rande Generates a series of random numbers exponentially
distributed between 0 and 709.7827.

round(x) Rounds x to the nearest integer. If the fractional part of x
equals 0.5, x is rounded up.

sin(x) Calculates the sine of x, which is assumed to be an angle
in radians.

sinh(x) Calculates the hyperbolic sine of x.

sqrt(x) Calculates the square root of x. If x < 0, the function fails.

tan(x) Calculates the tangent of x, which is assumed to be an angle
in radians. This function is undefined at multiples of π/2.

tanh(x) Calculates the hyperbolic tangent of x.

trunc(x) Calculates the integer part of x i.e. trunc(1.23) = 1.0

Chapter 4

Integration methods 31

4. Integration Methods

Overview

ModelMaker uses numerical methods to solve differential equations.
Using ModelMaker you can solve equations that cannot be solved
using analytical methods and find solutions to problems that would
be beyond even expert mathematicians.

For non-expert mathematicians who nevertheless wish to find
solutions to complex problems in the field of their own expertise
ModelMaker uses suitable general methods of integration. In some
cases these methods may be inappropriate and other methods may be
chosen. This chapter gives an insight into these integration methods
and when it may be appropriate to use them.

This chapter describes only the bare essentials of the methods used.
For a more detailed introduction see:

Press, William H., Flannery, Brian P., Teukolsky, Saul A. and
Vetterling, William T., Numerical Recipes. Cambridge University
Press, Cambridge 1989.

The full story is provided by:

Gear, C. William, Numerical Initial Value Problems in Ordinary
Differential Equations. Prentice-Hall, Englewood Cliffs, N.J. 1971.

Stoer, J. and Bulirsch, R., Introduction to Numerical Analysis. Springer-
Verlag, New York, 1980.

For details on Gear’s Method3/14/00, see: C. W. Gear, The Automatic
Integration of Ordinary Differential Equations, Comm ACM 14, 3, pp
176-179 (1971).

Boundary conditions

ModelMaker is designed to solve ‘initial boundary’ problems, i.e. sets
of differential equations where only the initial value of a variable is

Reference

Chapter 4

 Integration methods 32

known. The application does not solve two point boundary
problems.

Consequently the remainder of this chapter comprises brief
descriptions of how, given an initial value and a differential equation,
ModelMaker uses the various methods to calculate ‘future’ values of
the variables. Note that although ModelMaker uses time (symbol t)
as the default independent variable you can use any variable and
change the symbol if you wish to do so.

Euler's method

The simplest method for solving differential equations numerically is
Euler's method. As with all other methods this is based upon the
assumption that the rate of change at a point (the differential) also
applies over a finite interval.

so that

The differential, which can be calculated from the known equation, is
assumed to hold over a finite interval ∆t so that a finite change in y, ∆
y, can be calculated. A new value of y can then be calculated from the
previous value plus the change over the time interval:

where y' is the value of the function after a time period of ∆t.
This is an approximation because in fact the differential, dy/dt, may
change over the finite interval ∆t. However the approximation can be
a good one if the time interval is small.

In practice this method is not recommended for many problems, as it
can be very inaccurate and highly unstable. It is included in
ModelMaker primarily for:

t
y

dt
dy

∆
∆≈

t
dt
dy ∆≈∆y

yyy ∆+=′

Chapter 4

Integration methods 33

1. Educational applications.

2. Occasional models whose differential equations are very well
behaved, and where minimizing the computational overhead
associated with the other methods is desirable. ‘Well behaved’
is jargon usually meaning ‘smooth’, i.e. the function has
continuous derivatives.

We recommend that if you are making serious use of the Euler
method you should occasionally check that the results are
comparable with those obtained using a more sophisticated method,
e.g. Runge-Kutta (see later in this chapter).

Mid-point method

The mid-point method is an extension of Euler's method. A standard
Euler step is used to estimate the value of the function half-way across
the interval (i.e. at the mid-point). From this position a new estimate
of the derivative is made, and this is applied across the whole step
from yn to yn+1.

In equations this is represented as

This method has considerable advantages over Euler's method in
terms of accuracy, primarily because it is using a value for the
derivative that is a better average over the interval than a derivative
calculated just at the beginning of the interval.

Runge-Kutta method

The idea behind the mid-point method can be extended almost ad
infinitum to produce more and more complex ways to cross the
interval with more intermediate points. However, such extensions do
not necessarily confer greater accuracy, and certainly make the
calculations more complicated. A compromise between using more

t
dt

dy
yy

t
dt
dy

yy

n
nn

n
nn

∆+=

∆+=

+
+

+

21
1

21 2

Chapter 4

 Integration methods 34

and more intermediate evaluations of the derivatives and a
reasonable level of performance is the ‘4th order Runge-Kutta
method’. This is probably the most popular numerical method of all
for solving differential equations and is the default method used by
ModelMaker.

Runge-Kutta, specifically 4th order Runge-Kutta, involves four
evaluations of the derivatives of the function, once at each end-point
and twice in the middle (see diagram below).

• First the derivative at the beginning of the interval (position 1) is
calculated and used to estimate the function at the midpoint
(position 2), mid-point method style.

• The derivative is then calculated at this mid-point and applied
from the beginning of the interval to arrive at another estimate of
the mid-point (position 3).

• The derivative is recalculated at this second estimated mid-point
and the new value is applied from the start of the interval to
calculate an initial estimate of the function for the end of the
interval (position 4).

• Finally the actual estimated value of the function at the end of the
interval (yn+1) is calculated by combining the derivatives, taking
1/3 of the value of each of the two mid-point derivatives, and 1/6
of each of the two end ones.

Algebraically:

where d1 is the derivative evaluated at position 1
 d2 is the derivative evaluated at position 2
 d3 is the derivative evaluated at position 3
 d4 is the derivative evaluated at position 4
 ∆t is the time step.

Runge-Kutta is a particularly robust method. It is unlikely to fail and
can deal with some very difficult systems of differential equations,
although it may not always be the quickest method. It is the default
method selected by ModelMaker and if you try one of the

t
dddd

yy nn ∆

 ++++=+ 6336

4321
1

Chapter 4

Integration methods 35

alternatives you would be wise to compare its results to those of
Runge-Kutta before risking your reputation on the rocks of
integration noise.

Bulirsch-Stoer method

The Bulirsch-Stoer method differs from those detailed above in that it
does not take small steps, it takes wild leaps forward. We do not
discuss the fine details here but confine ourselves to the basic
concept; readers are referred to the standard texts for a full
discussion.

A large step is to be taken. To begin with this is done is two half
steps, yielding an estimate of the solution at the end of the large step.
It is then attempted in four sub-steps, yielding a new and
theoretically more accurate estimate. It is then attempted in six sub-
steps, yielding a new and theoretically even more accurate estimate.

This process could be repeated indefinitely, although a practical limit
of 96 sub-steps is placed on the implementation used in ModelMaker.
Each time, an estimate of the true answer is obtained together with
estimates of the extrapolation error. If the error is unsatisfactory (see
Step length control and accuracy criteria), another attempt is made to
cross the interval

If the error is within the required limits, the step is deemed a success
and the process is restarted for the next interval.

This method is very elegant and can be very usefully applied.
However, it should really be reserved for ‘well behaved’ problems,
and can be of limited use if many output steps are required (see
Choice of method later in this chapter).

Gear’s method

Gear’s method is an algorithm for integrating a set of ordinary
differential equations that works efficiently on stiff sets of equations.
These are typically for systems exhibiting extremes of behavior – in
some periods the functions are changing slowly and others where
they change rapidly - whose solutions remain bounded. For example,
simulating a set of chemical reactions often results in a stiff set
equations because although a set of reactions may initially occur very

Chapter 4

 Integration methods 36

rapidly if they tend toward some equilibrium then the timescale
decreases greatly.

In Gear’s method, when calculating the solution at a point in time, an
interpolation polynomial is calculated for the previous points in time
and the new point. A set of values, for the solution at the new time
point, is acceptable if the derivatives at the time point, calculated
from the equations are sufficiently similar to the derivatives of the
interpolating polynomial at the time point.

An implementation of Gear’s method has to choose when to change
the order of the interpolating polynomial (typically orders between 1
and 4 are used) and when to change the size of integration steps. The
version of Gear’s method implemented in ModelMaker also
estimates the integration step size to be used at the start of a
simulation (the user can over-ride this).

Step length control and accuracy criteria

All the methods used by ModelMaker to solve differential equations
automatically control their own step length to provide you with the
answer at a specified level of accuracy as quickly as possible.
Estimates are made of the accuracy of the solution and the length of
step is adjusted accordingly. If the accuracy is inadequate then the
step length is reduced; if the accuracy is greater than required the
step length is increased.

In order to be able to adjust the length of step taken an estimate is
required of the accuracy of each step. In the cases of Euler, mid-point
and Runge-Kutta an identical approach to estimating the error is
used: step-halving. Having completed a step, the step is redone in
two halves. This must produce a more accurate answer, and the
assumption is made that the difference between the two estimates is
a good estimate of the error in the step.

You also get a more accurate estimate of the function from the two
half steps, and this is the value that all the methods actually use. Of
course there is no estimate of how accurate this is relative to the
‘true’ and probably unobtainable analytic solution. All that is really
known is how much better it is than the full size step! The only way
to find out would be to take even smaller steps, i.e. do more work.

Step length:
Euler, Mid-point

and Runge-Kutta

Chapter 4

Integration methods 37

Although step-halving involves a lot more computation this is
unavoidable if the advantages of step length control are to be gained,
and in general these advantages greatly outweigh the costs.
However, the overheads are not as great as might be first thought
because for each of the methods some of the derivative evaluations
can be used for both the full and the half steps.

The estimate of error, which we shall term ε, is used to adjust the
step length by comparison with a desired accuracy, ε0. The
relationship used to make this comparison depends upon the method
being used, because the methods vary in the order of their error term.
Euler has a second order error term, meaning that the error is roughly
proportional to ∆t2. In other words, its error is only one order less
than the solution itself. The mid-point method’s error term is third
order, so the error is much smaller in relative terms. The Runge-Kutta
error term is fifth order. This all means that the accuracy improvement
resulting from the same change in step length is greater for Runge-
Kutta than for mid-point, which is in turn greater than for Euler.
Consequently the way in which the step lengths are altered to adjust
the error for each step varies across the different methods.

For a time step ∆t1 producing an error ε, these arguments suggest
that the time step ∆t0 which would produce the desired error ε0 is
given by the following expressions.

For Euler

For mid-point

For Runge-Kutta

5.0

0
10 ε
εtt ∆=∆

333.0

0
10 ε
εtt ∆=∆

2.0

0
10 ε
εtt ∆=∆

Chapter 4

 Integration methods 38

These equations are used to control the step length used by
ModelMaker. If the error is larger than that desired then these are
used to determine a new reduced step size to retry the step. If the
error is less than that desired then the equations above are used to
determine the step length used for the next step. In practice
ModelMaker is a little more conservative than these equations
suggest: when a step fails the time steps are reduced rather more
than may be required, just to be sure that the next step succeeds.

The description above has been confined to considering just one
differential equation. Most ModelMaker applications contain a
number of simultaneous differential equations, each with their own
errors. These are solved together and the same step length is used for
each. Therefore the step length is determined by the worst equation.

Another issue raised by the simultaneous solution of numerous
equations is that the errors calculated using the step-halving
approach described above are absolute. This does not matter
provided that all the equations have solutions of roughly the same
order, so that the errors are roughly comparable. If they have
solutions that are orders of magnitude apart then problems can arise.
In this case it may make sense to use a fractional error to normalize
between the different scale equations.

The desired accuracy referred to earlier, ε0, is determined by
multiplying the accuracy requirement defined by the user by a
scaling factor. If Constant Errors is selected in the method setup, this
scaling factor is a constant that the user can set. The default value is
1.0. If Fractional Errors is selected then the scaling factor is the
reciprocal of the function value (1/[function value]). There is a
tendency for this last option to appeal to most users as a first choice.
However, they should be aware that it encounters real problems if
the function approaches or passes through zero. In fact, if the
solution is zero then the method fails completely. The third scaling
method provided by ModelMaker is immune to this problem; it sets
the error scaling equal to the magnitude of the solution plus its
derivative times the step length (yn + ∆t×dy/dt).

Adjusting the step length for the Bulirsch-Stoer method is done
rather differently. It is quite rare for a Bulirsch-Stoer step to fail; the
whole technique is based around the idea of keeping on trying until
you get there! Adjusting the step length is therefore a rather prosaic
business. In practice, it is rarely useful to extrapolate beyond the last
seven estimates of the solution; the earlier values do not contribute

Step length:
Bulirsch-Stoer

Chapter 4

Integration methods 39

extra information. Therefore if the method has to cross the interval
more than seven times before converging satisfactorily then it is
wasting some effort, implying that a smaller step is required.
Conversely, if fewer than seven trips are required then the step is
shorter than strictly needed. The next step length is adjusted
accordingly. The step fails completely if it crosses the interval 11
times and still does not converge. Under these circumstances the step
length is reduced sharply and the step re-attempted.

Through the use of these techniques ModelMaker constantly adjusts
the step lengths it takes to ensure it works not within the accuracy
you specify, but at the accuracy you specify. This means that if the
system is highly dynamic then the step lengths are small and the
calculation proceeds slowly. If the system only changes slowly then
the step lengths become longer and the calculation is quicker. This
effect can become apparent if you have a model where some kind of
dynamic event suddenly occurs part way through the run. The
calculation as monitored by the percentage indicator in the run
message bar slows down visibly.

When using Gear’s method a different approach is taken in that the
end-user specifies a relative error per step. For example, if this is
0.001, then the integration method should ensure that the error on
each component in one integration step is less than 0.1%.

Note that for stiff simulations, the ones for which Gear is an
appropriate solver, the solution tends to a steady state based on
conservation laws. This is independent of the integration errors and
hence errors do not accumulate from step to step.

Gear's Method changes the step size and the order of the
interpolating polynomial as follows:

If the iterative solution procedure for the (implicit) equations solved
by Gear do not converge, then the step size is reduced and the step is
re-tried.

If the iterative solution procedure converges, Gear's Method
estimates the error on that step. If that is within the specified
criterion, Gear's Method estimates the largest step sizes at which the
error would be acceptable at the current order, an increased order
and at a reduced order. If any of these would mean a significant

Step length:
Gear’s method

Chapter 4

 Integration methods 40

increase in step size, the step size is changed and (if appropriate) so is
the order.

If the error is unacceptable, the step size is reduced and the step is re-
tried. If reducing the step size does not cure the problem, the order of
the interpolating polynomial is reduced.

Choice of method

There is no correct method to solve the differential equations in your
model. The best method to use is the one that gets the right answer in
the shortest time. The default method in ModelMaker is 4th order
Runge-Kutta.

The first question to ask is “Is the system stiff?” A stiff system is one
in which the equations for the processes contain significantly
different timescales and, at some instants during the simulation, the
components values all change more slowly than the fastest process. A
typical stiff system is a set of chemical reactions where some of them
reaction rates are so fast that some of the components behave, at least
for part of the simulation, as if they were in quasi-equilibrium.

If your system is stiff, you should use the Gear solver.

If your system is not stiff, the default (4th order Runge-Kutta) is a
good method to try.

This solves most problems and is much more reliable than Euler or
mid-point. By this we mean it is more likely to get the right answer.
However, even with Runge-Kutta it is always worth occasionally
checking that your solutions are accurate by specifying a much
higher accuracy level and seeing whether you get the same result.

The Euler method is not very stable and is really only included for its
educational value. Mid-point is usually a great deal safer. Both Euler
and mid-point can be useful if you are forcing ModelMaker to use
short step lengths, irrespective of the accuracy criteria. You might do
this if for some reason you require lots of output intervals. In this
situation step lengths set by the accuracy criteria often take the
solution beyond the next output interval, and ModelMaker reduces
the step length accordingly. You may therefore inadvertently force
the solution to go more slowly than strictly necessary, simply because
you want lots of points on your graph! In these circumstances the

Chapter 4

Integration methods 41

simplest methods, with their low computational overheads, can be
useful.

What about Bulirsch-Stoer? It has accuracy comparable with that of
Runge-Kutta and for some kinds of applications is much quicker,
especially ones with smooth solutions. However, it does not deal well
with discontinuities and sudden changes in the solutions. For
example, data derived from lookup tables is often rather
discontinuous:

The discontinuities can sometimes be smoothed out by using the
more sophisticated interpolation options that exist for lookup tables
However, the major limitation of Bulirsch-Stoer is that it is only really
useful when it can take giant steps. For many problems it can never
get into its stride because it has to keep stopping to generate output.

Starting step length

Above we discussed the adjustments to step length which
ModelMaker performs as it goes along. Of course, this assumes that
there is a valid first step that it can make. If the first step is so bad
that the run fails immediately, giving an error, then the program has
no chance to adjust automatically.

The initial step length is calculated by dividing the first output
interval by the Starting Steps value set in the Integration
Configuration dialog box. By default, the Starting Steps value is 1.0
so ModelMaker assumes that a reasonable first step length is one
output step. Smaller first steps can be achieved by increasing the
Starting Steps value.

Chapter 5

Interpolation in lookup files and tables 43

5. Interpolation in Lookup Files and
Tables

Overview

Lookup tables provide a way of including tables of numerical data in
ModelMaker models. ModelMaker provides a number of methods
for estimating values in between the tabulated values. Of these, three
are really just ‘rules’ and three are standard numerical interpolation
methods:

‘Rules’ ‘Interpolations’

• Interval Start • Linear

• Interval Center • Polynomial

• Interval End • Rational Function

This chapter outlines the bare essentials of the methods used. For a
more detailed introduction see:

Press, William H., Flannery, Brian P., Teukolsky, Saul A. and
Vetterling, William T., Numerical Recipes. Cambridge University
Press, Cambridge 1989.

For the full story consult:

Stoer, J. and Bulirsch, R., Introduction to Numerical Analysis. Springer-
Verlag, New York, 1980.

Acton, Forman S., Numerical Methods that Work. Harper and Row,
New York, 1970.

Reference

Chapter 5

 Interpolation in lookup files and tables 44

Rule methods

These are very simple methods. No actual interpolation is carried
out; instead, simple rules are used to determine which value in the
table to use. The rules are explained with reference to the diagram
below.

• Interval Start. Suppose we require a value of y in the region x1 ≤ x
< x2. If interval start is used then the value of y1 applies across the
whole interval.

• Interval End. Suppose we require a value of y in the region x1 < x
≤ x2. Under interval end the value of y2 applies over the whole
interval.

• Interval Center. Under this rule a y value is used over the half
interval above and the half interval below its corresponding x
value. For example, the value of y2 applies from the midpoint
between x1 and x2 to the midpoint between x2 and x3, i.e. over
the range

22
3221 xx

xxx +<≤+

Chapter 5

Interpolation in lookup files and tables 45

Linear interpolation

Linear interpolation uses information from two points to estimate
values between them. As the name suggests, it involves taking the
straight line between the two values and using this to calculate the
value of y at any intermediate x:

The method is very quick and simple, but has the weakness that it
can be rather discontinuous at the tabulated values, as shown in the
example below. In some situations this can be a limitation.

Polynomial interpolation

Polynomial interpolation involves using information from points
other than those bounding the interval of interest to define a
polynomial which then gives an estimate of y for intermediate x.

For example, a cubic (i.e. third order polynomial) function is
completely described by four values in the lookup tables. This
function can then be used to estimate the value of y for xn ≤ x < xn+1.
The order of a polynomial is one less than the number of points
required to define it, so linear interpolation is in fact a first order
polynomial interpolation.

Third or fourth order polynomial interpolation generally produce
much smoother results than simple linear interpolation. However
you should be cautious of using higher orders as they are prone to
yield solutions that oscillate wildly in between the tabulated values.

You can check how an interpolation behaves by plotting its results on
a fairly fine output mesh over the range of interest.

Flow

0 20 40 60 80 100
Time

0

10

20

30

40
 litres/s

Chapter 5

 Interpolation in lookup files and tables 46

Rational function interpolation

A rational function is one polynomial divided by another:

Generally these are as good as polynomials at interpolation, although
they are rather more complicated. However, they are useful for
interpolating functions which contain ‘poles’. A pole is a singularity
of some sort, for example a place at which the function approaches
positive or negative infinity. The function cannot be evaluated at such
a place even by a rational function, but the latter can get a lot closer to
a solution than can a comparable polynomial function.

For the mathematically minded, such poles can occur (quite
commonly) in the complex plane near to the real point where you
want to interpolate the function. Such a nearby complex pole can
upset polynomial interpolation in a way that rational functions can
resist.

Rational function interpolation is useful, then, for interpolating badly
behaved functions while retaining the smoothness advantages of
conventional polynomials.

Choice of interpolation method

There is no definitive answer to the question of which interpolation
method to use. As ever, everything depends upon circumstances.
However, the following points are worth bearing in mind:

• Interpolation is about estimating intermediate values using
completely arbitrary functions. Everything therefore depends on
the nature of the function you are interpolating.

• Sudden jumps and kinks in interpolated values can, sometimes,
upset other numerical methods ModelMaker may be using,
particularly for solving your differential equations.

• Higher order polynomials are smoother because they are stiffer!
Like an oil tanker they cannot turn corners quickly. If you want a

2

2

)(
)(

)(
ixhxg
cxbxa

xd
xn

xr
++
++==

Chapter 5

Interpolation in lookup files and tables 47

lot of sharp changes you may find them smoothed out by a 4th
order polynomial.

• Very high order polynomials are erratic and can oscillate
spectacularly in between your tabulated values whilst still passing
through them.

• It is always wise to plot out interpolated variables, preferably
using a fine output interval, over the range of interest to check out
the method’s behavior. This can easily be done in ModelMaker
(see User Manual). Check to see whether it's doing what you want.

Chapter 6

Optimization 49

6. Optimization

Overview

 In any simulation modeling environment one of the most important
questions to ask should be “Is the model correct?” or “Does this
model represent the observed system accurately?” A first step in
validating a model might be to compare the output with observed
(real) data. ModelMaker allows you to do this by adding data to the
Model data view.

If the simulated data does not match the observed data to any
obvious degree then there may be several reasons:

• The model itself is incorrectly built, i.e., has the wrong
components

• The model structure is correct but has the wrong equations

• The model is ‘more-or-less’ correct but the parameters have
the wrong values

ModelMaker includes statistical tools that allow some quantitative
judgment to be made on just how close the model predictions are to
the observed data. However the user must decide whether the model
structure and the equations used are correct. Since most models are
imperfect to some extent the decision is really whether the model is
good enough. If the output seems to fit, the discrepancies may be
reduced using ModelMaker’s Optimization tools. Optimization is the
adjustment of parameter values to minimize the differences between
predicted and observed data.

Although optimization is a very useful tool, if you are interested in
the way a model changes when parameter values change then you
can also use the Mode Carlo, Minimization and Sensitivity analysis
functions.

This chapter outlines the bare essentials of the optimization methods
available. For an introduction see:

Reference

Chapter 6

 Optimization 50

Press, William H., Flannery, Brian P., Teukolsky, Saul A., and
Vetterling, William T., Numerical Recipes. Cambridge University
Press, Cambridge, 1989.

For the full story refer to:

Beington, Philip R., Data Reduction and Error Analysis for the Physical
Sciences. McGraw-Hill, New York, 1969.

Marquardt, D.W. (1963). J. Soc. Ind. Appl. Math., 11, 431-44.

Optimization defined

Optimization is the adjustment of parameters in the model in order
to minimize the difference between the model’s predictions and
observed data.

As with all simulation methods there are potential disadvantages of
which the user should be aware:

• Optimization is an iterative process, and is therefore time-
consuming

• It may not find the ‘best’ parameter set. The minima it finds may
be local, not global

• Initial values of all the parameters to be adjusted will be required.
For some problems these may need to be good estimates for the
method to succeed

Optimization as minimization of deviation

Two methods of minimization are available:

• Marquardt (also known as Levenberg–Marquardt)

• Simplex

Chapter 6

Optimization 51

The default regression method used by ModelMaker is the
Marquardt method. The measure of deviation used by ModelMaker
is the residual sum of squares, RSS, defined as:

where oi is the value of the ith observation
 εi is the error estimate for that observation, and
 mi is the model prediction for that observation.

ModelMaker offers three main alternatives in the Optimization Run
dialog:

• Ordinary least squares where ε = 1

• Weighted least squares where ε is set by the user in the
Optimization Settings dialog (opened using the Advanced
button in the Optimization Run dialog), Weighting tab

• Extended least squares where the error is assumed to have
the form:

ζσε im22 =

where σ and ζ are values to be found by ModelMaker. When
Extended Least Squares method is used values of σ and ζ for
each component configured in the model data view are
displayed in the Optimization Results view under Results in
the Model Explorer.

A fourth option is to check ‘Reasonable error estimates’ in the
Optimization Run dialog. This grays out the individual options and
accepts the error weightings chosen by the user (in the Optimization
Settings dialog) as being reasonable estimates and takes these values
as they stand. Hence this is a weighted least squares with fixed error
estimates. If Reasonable error estimates is not checked then it is
assumed that the errors are thought to relate to each other but their
absolute values are not known. In this case additional information is
calculated by assuming a good fit and scaling parameter variances by

∑ −= 2

2)(

i

ii omRSS
ε

Chapter 6

 Optimization 52

the Residual Mean Square that is given as the ratio of the Residual
Sum of Squares to the Residual Degrees of Freedom:

FreedomofDegreesResidual
Squares of SumResidual SquareMeanResidual =

Optimization recipe

The iterative approach employed for optimization is as follows:

1. Pick initial starting values for the parameters, a

2. Evaluate RSS

3. Change parameters according to the selected method

4. Evaluate the model with the new parameters, thereby obtaining a
new value of RSS

5. If RSS improves, decrease the estimate a, re-evaluate the model
and return to step 3

6. If RSS gets worse, increase the estimate a, re-evaluate the model
and return to step 3

Convergence criteria

In principle the above recipe could continue indefinitely, producing a
marginally better fit from time to time. In practice we should
recognize that any measurement error, no matter how small, will
prevent the perfect parameter set being found, even if the model is
completely correct. Therefore it is sensible to specify when to stop, or
in other words to stipulate convergence criteria.

In ModelMaker, optimization is deemed to have converged when a
user-defined number of consecutive convergent steps has occurred. A
convergent step occurs when RSS improves only marginally and the
parameters do not change significantly.

If both of these conditions are true then the step is convergent. If a step
is not convergent, i.e., RSS increases or decreases significantly, or the

Chapter 6

Optimization 53

parameters change significantly then the running total of convergent
steps returns to zero.

The default number of consecutive steps required for convergence is
5. This is rather conservative. For many problems a lower value will
be sufficient and may save considerable computing time.

Parameter constraints

ModelMaker will attempt to impose constraints on the range of
values the parameters to be optimized can take. This is to try and
prevent completely unrealistic values being used that would cause
the model to fail, thereby terminating the optimization attempt. You
can override these by setting your own constraints using the
Parameter Definition dialog.

If a parameter hits its constraint, it will usually return to a more
reasonable value. If, however, the parameter continues to bump into
the constraint for a user defined number of times, the optimization
will halt (see Optimization termination below).

A constraint range can be defined for each individual parameter
which will over-ride the default constraint range defined for the
optimization process.

Optimization termination

The optimization process may stop before convergence occurs for a
number of reasons:

• A calculation reaches the limit of machine accuracy. This means
that the parameters and/or RSS are continuing to change, and the
changes are so small that they cannot be calculated accurately
because the computers limit of numerical accuracy has been
reached. Usually this condition can be interpreted as full
convergence.

• The value of λ (Marquardt method) becomes too large, so that the
gradient solution results in a numerical overflow. This usually
indicates a very poor fit, and may be overcome by trying
improved starting values for the parameters.

Chapter 6

 Optimization 54

• The model itself fails during one of the required simulations. This
can happen if the optimization takes a wild jump, leading to a
parameter set that takes the model's equations out of range. This
situation may be overcome by reducing the constraint range for
the parameters.

• Constraint range violation. The optimization has repeatedly tried
to take one or more parameters outside their allowed range.
Sometimes this is a realistic situation and the parameters need to
be updated and the optimization repeated, perhaps with a wider
constraint range. Sometimes, however, a parameter continues to
be either decreased1 with the result that it constantly hits its
constraint range. This is often because its true value is zero! This
problem is overcome by accepting the very low or zero parameter
value, and re-optimizing without that parameter selected for
adjustment.

Assumption of normality

Marquardt as implemented in ModelMaker assumes that the errors
on your data are normally distributed. In practice you can usually get
away with errors that are ‘more or less’ normally distributed without
any dire consequences. In fact the estimates of the parameters are
usually reliable even if the data has errors that are not at all normal in
their distribution. However this does not apply to information
derived from the covariance matrix, such as the uncertainty estimates
on the parameter values. In such circumstances these should be
viewed with caution.

Optimization statistics

How well does the model fit the data? ModelMaker provides three
main ways of assessing this. After performing an optimization run
two new views are created under Results in the Model Explorer.
These are Parameter Results and Optimization Statistics. Click the
latter to view the statistical analysis of the optimization run.

1 Sometimes the situation occurs where the parameter is continually
increased.

Chapter 6

Optimization 55

The first measure of the ‘goodness of fit’ can be obtained from the
Sum of Squares value. This can be looked up on a χ2 table with
degrees of freedom equal to the number of data values minus the
number of adjusted parameters. This gives the Q value – the
probability that the difference between the model and the data has
occurred by chance. To avoid the use of tables ModelMaker displays
Q in the results view. Note that Q is only calculated when you select
Reasonable error estimates in the Optimization Run dialog.

If Q is low then there is a problem which could be caused by any of
the following:

• The model is wrong! The model does not fit the data, and perhaps
never will. You should always be aware of this possibility.

• The errors on the data are underestimated. This can be quite
common and the error estimation is usually worth checking. Be
suspicious of purely instrumental errors where variation between
replicates is likely. If the errors are based on variation between
‘replicates’, are the replicates genuine according to the scriptures
of experimental design? (Consult a good textbook on the subject if
you are unsure.) Are there enough replicates to give good
estimates of the errors?

• The previous points apply only to random errors. If there are
systematic errors in the data, they need to accounted for
separately.

• Low values of Q can also be due to non-normal errors which often
manifest themselves as an unusually high number of outliers.

This last point is quite common and isn't usually a major problem if
the distribution is more or less normal. For this reason apparently
low values of Q are often accepted.

A truly wrong model, i.e. one that fails to fit the data, will usually
generate a very low Q value, say 10-10 or less. A Q value of 10-3 or so
is worrying, but may just be a symptom of errors which are rather
non-normal. A value of say, 0.1, is very encouraging. High values of
Q, i.e. tending to 1.0, are basically too good to be true! They usually
arise through overestimating the errors, or fudging the data! A useful
rule of thumb is that χ2 should be roughly equal to the number of

Interpreting Q

Chapter 6

 Optimization 56

degrees of freedom (the number of data values minus the number of
adjustable parameters).

The second, very common, way to assess goodness of fit is to use an
analysis of variance for the model. This partitions the total variation
in the data into the variation explained by the model and the residual
variation2. If the residual variation is small compared to the total
variation, the model is doing a good job of describing the data. The
information is summarized in the Optimization Statistics view
(displayed under Results in the ModelMaker Explorer).

The columns of this table are the two components of variation (Model
and Residual) and their total (the total variation in the data). The
statistics presented in the table are:

• Degrees of freedom (DF).

• Weighted sum of squares (WSS). This is the variation attributed to
each component.

• The mean square (MS). This is the variation per degree of
freedom, i.e. MS = WSS / DF.

• The variance ratio or F-Value, where F= Model MS / Residual MS.

The higher the value of the variance ratio the less likely it is that
your model has explained variation by chance.

• P-Value. This is the probability associated with the variance ratio
and degrees of freedom values. It is the probability that the model
explained the variation by chance. The smaller it is the better the
fit.

• r2 value. This is the fraction of the total variation explained by the
model, i.e. r2 = Model WSS / Total WSS.

It is worth pointing out that the total sum of squares is calculated as
the total squared deviation of the data from the (weighted) mean of

2 The residual variation is the variation of the data about the simple
model, i.e., the mean data value.

Analysis of
variance

Chapter 6

Optimization 57

the data. In other words what you are really testing with your
analysis of variance is whether the model is a (significantly) better
representation of the data than its mean value.

Analysis of variance is therefore answering a different question to the
Q value derived from χ2. Q is the probability that the difference
between the model and the data is pure chance, i.e. does not arise
through a fault in the model (assuming that the data errors you
provide are accurate and normal). This may give a low value for
reasons other than the model being wrong. Similarly a low r2 doesn't
necessarily imply a poor fit to the data, merely that the model does
not do much better than the mean. This sometimes happens if the
data is very flat.

The final, very popular, way to test goodness of fit is to make a visual
comparison of the data overlaid on the model prediction using the
graph view.

This gives an immediate indication as to the accuracy of the model
and gross errors may be detected this way. However when a
quantitative analysis is required you should use ModelMaker’s
inbuilt functions described above.

Optimization guidelines

Optimization as implemented in ModelMaker is a very powerful
facility but it is not a panacea. The technique should be applied with
care. The following points are worth noting as they are common
pitfalls for the over-ambitious:

• Be sensible about how many parameters you attempt to optimize.
Every Marquardt iteration has to carry out N+1 model runs
(where N is the number of adjustable parameters). Hence
increasing the number of parameters will increase the time
required.

• You should have more (ideally many more) observed values than
adjustable parameters.

• Try to provide reasonable initial values for your parameters. This
will certainly increase your chances of success, and probably
speed up convergence.

Comparison of Q
and F

Visual
comparison

Chapter 6

 Optimization 58

• Be aware of local minima in the χ2 surface. Marquardt does not
always find the best parameters for your model, the global
minimum; it may get stuck in a local minimum, perhaps far from
the true result. It is usually worth starting with several different
initial sets of parameters to check that they all end up at the same
convergence point.

Optimization changes the model predictions by adjusting the
parameters. If the predictions are not very sensitive to changes in the
parameters then it will be difficult to improve the fit. Put another
way, ask yourself whether the data has something to say about the
value of the parameters. A set of data will be of limited value in
determining the value of a parameter which has only a marginal
effect on the simulated values of that data. This is particularly true
when the data has significant errors associated with it.

Parameter Estimation

Optimization will only give acceptable results if you have good
estimates of the values of parameters to begin with. If you do not
know the values of parameters then you may choose to use one of the
parameter estimation algorithms included with ModelMaker. These
attempt to find good initial values of parameters before running the
optimization. The two methods are Grid Search and Simulated
annealing. You can choose whether or not to use parameter
estimation by selecting Initial Parameter Estimation in the
Optimization Run dialog. This activates the method options. You can
configure the methods in the Estimation tab of the Configure
Optimization dialog opened from the Advanced button on the
Optimization Run dialog or the Configure Optimization command on
the Model menu. You can set methods for individual parameters
using the Parameter Definition dialog for each parameter. On the
Estimation tab select either Range or Fixed to activate the Grid steps
option for Grid search.

This method of parameter estimation employs a simple grid within
the defined estimation range. The size of the grid is defined in the
Grid Steps edit box. As with other optimization routines this will
change the parameter set until a minimum is found. the estimates
will then be passed to the Marquardt optimization routine.

Grid Search

Chapter 6

Optimization 59

When using the Marquardt method to find the optimal parameter set
of a nonlinear system, you usually want to find those that correspond
to the global minimum. In many cases multiple local minima may
exist and these can cause problems in optimization algorithms as
they cannot distinguish a local minimum from a global one. This is
due to the fact that Marquardt finds minima by following the local
gradient towards the closest minimum. If you have a parameter set
close to a global minimum this is fine but otherwise the best solution
may not be found.

Simulated annealing is able to escape these local minima and will
find the global minimum more reliably. The downside is that the
algorithm may take longer to converge at a solution.

The Estimation tab of the Optimization Settings dialog comprises a
number of configuration options for Simulated Annealing. These
include the default search range and those specific to this algorithm.

Maximum number of temperature steps.

Simulated annealing works by starting with an initial temperature. It is
this value governing how likely the algorithm is to accept worse
steps. As the annealing continues, this temperature is gradually
lowered, meaning that the algorithm is progressively less and less
likely to accept worse steps. The Maximum Number of temperature steps
controls the number of times the algorithm can lower the
temperature.

Number of trials per temperature step

At each level of temperature, the algorithm makes a number of trials.
During each trial the parameters are varied and the model is run. The
new value of the objective function is compared to the current value
and the change in the parameters is accepted or rejected.

Number of good trials before temperature step

If the algorithm is thought to be accepting too many trials at a
particular temperature step, then the temperature should be lowered
as it is likely that the temperature is too high, causing too many trials
to be accepted.

Simulated
Annealing

Configuring
Simulated
Annealing

Chapter 6

 Optimization 60

 Initial Temperature

This is the initial value of the temperature of the algorithm. It is an
adjustable parameter for the user to set and change as necessary.

Acceptance Probability Distribution.

Trials are accepted or rejected by comparison with a probability
distribution. Two functions, Boltzmann and Tsallis distributions are
available.

Cooling Schedule

This controls how the temperature is lowered. If a "multiplicative"
factor is chosen, then the temperature is reduced by

FactorTT oldnew ∗=

If Exponential is chosen, then the temperature is dropped according
to the schedule:

N

oldnew stepsmaximum
stepcurrent

TT

−∗= 1

where N is the user-defined factor in the Exponential edit box.

Termination Criterion

To stop the annealing, the user may wait for the maximum number of
temperature steps to be taken, or specify a method of stopping the
process if nothing is changing. User proportion of good steps will
stop the optimization if the proportion of good trials falls below a
certain level. For example if this value is 0.05, and the number of
trials at a temperature step is 100, then the algorithm will stop if the
number of good trials at a temperature step falls below 0.05*100 = 5.

Chapter 7

Handling DLL functions 61

7. Handling DLL Functions
ModelMaker DLL function components allow models to call
functions located in external DLL modules during a model run. Such
external functions receive an array of values from the model and can
perform any manipulation of these values before returning a separate
array of values to the model. Some possible uses of such functions
are to:

• perform a special mathematical calculation not available within
ModelMaker

• interface a ModelMaker model to the calculations of an existing
model

• display a specially designed dialog box for the model

• query or update a database

• access an external device e.g. play a video or sound clip.

DLL Function Interface

For a function within a DLL to be compatible with a ModelMaker
model it must

• conform to the ModelMaker DLL function prototype

• be an exported function.

The ModelMaker DLL function interface also defines the following
attributes of the function and DLL resources:

• function parameters

• function return value

• function information string table.

Chapter 7

 Handling DLL functions 62

Function Prototype

The ModelMaker DLL function prototype for C and Pascal are shown
below.

 extern "C" int function_name (int input_length,
 double* input_values,
 int output_length,
 double* output_values);

Type

 ArrayDouble = array [0..100] of Double; {array of arbitrary
 length}
 PArrayDouble = ^ArrayDouble;

 Function function_name(input_length : Longint;
 input_values : PArrayDouble;
 output_length : Longint;
 output_values : PArrayDouble):
Longint; cdecl;

Exporting the Function

For C and C++ the function prototype makes the function an
exported function. However, by default C and C++ add an
underscore (_) to the start of all exported function names. In order to
make the function available to ModelMaker as “function_name”
rather than “_function_name” the EXPORTS section of the DLL
model definition file must be used as follows:

 EXPORTS
 function_name = _function_name

Pascal and Delphi require an export clause to be added to the module
file as follows

 export
 function_name;

C and C++

Pascal and
Delphi

Chapter 7

Handling DLL functions 63

Function Parameters

The parameters passed to a DLL Function are as follows:

• input_length

A 4 byte integer containing the number of elements in the
input_values array. This is the number of input values defined for
the DLL function component plus:

• 2 for Normal DLL functions
• 3 for Integrate DLL Functions.

• input_values

A far pointer to an array of 8 byte floating point values (double)
with the following structure depending on the type of the DLL
function component:

Normal Integrate

Window handle Window handle

Independent variable value Independent variable value
at the start of the step

First input value Independent variable value
at the end of the step

... First input value

Last input value ...

 Last input value

The window handle is the handle of the main ModelMaker
window and allows the DLL to display a message or dialog box, if
required.

Chapter 7

 Handling DLL functions 64

• output_length
A 4 byte integer containing the number of elements in the
input_values array. This is the number of output values
defined for the DLL function component.

• output_values
A far pointer to an array of 8 byte floating point values (double)
with the following structure:

First output value

...

Last output value

Function Return Value

The return value of the DLL function is defined as follows

• zero
The function has completed successfully and the model run
should continue.

• non-zero
The function has failed and the model run should terminate.

A non-zero value returned by a DLL function can refer to a string
resource contained within the DLL module. If the indicated string
resource exists, ModelMaker displays a message box inserting the
string resource text as follows:

“The model run was stopped during step <n> because <text>
when evaluating the DLL function <component>.”

where <n> is the step during which the error occurred
 <text> is the text read from the DLL’s string resource
 <component> is the name of the calling DLL function
 component

Chapter 7

Handling DLL functions 65

If the indicated string resource does not exist, ModelMaker displays
the following default message box before the model run terminates.

“The model run was stopped during step <n> because a call to the
ALL function <function_name> in module <module_name>
failed with value <value> when evaluating the DLL function
<component>.”

where <n> is the step during which the error occurred
 <function_name> is the name of the DLL function
 <module_name> is the name of the DLL module
 <value> is the value returned by the DLL function.

Function Information

The ModelMaker DLL function interface allows a string table
resource to be added to the DLL module containing information
about the functions provided by that module. This information
appears in the DLL Information dialog box (see Handling DLL
Functions). The string table must be defined
as follows:

String numbers Description

20000 - 20099 Names of the functions contained in the DLL

20100 - 20199 General description of the functions contained
in the DLL

20200 - 20299 Description of the input parameters

20300 - 20399 Description of the output parameters

If there are more than 100 functions in the DLL, the string resource
structure repeats from 20400.

The function name strings (20000 - 20099) can also be used to indicate
the type of each of the DLL function to ModelMaker as follows:

Chapter 7

 Handling DLL functions 66

String format Function type

function_name, N Normal (default)

function_name, I Integrate

The type indication contained in the resource strings is only of
information. It does not prevent a normal type DLL function being
called as an integrate function and vice versa.

Chapter 8

Using Event Actions 67

8. Using Event Actions
This section describes the syntax and use of the model event actions.
The syntax definition for the actions observe the following
conventions:

[, parameter ...] optional parameter list up to 64 parameters in
length.

Value numeric or model component value or
expression. For example, 2.123, 2.2 + 100, (V1 /
V2) + C1.

Event independent or component event.

Component_Event component event only.

Component compartment or defined value.

Initial compartment, defined value or delay.

Lookup lookup component.

“formatted text” text optionally containing formatting
commands (see below).

Message Text Formatting

ModelMaker uses formatting commands to control the appearance of
the values passed to the Message, GetChoice, GetValue, GetFileName
and SetFileName actions. Formatting commands may appear in the
message text, title text and file name fields of the above actions. All of
the command begin with the percent character, %, and have the
following format:

%[-][width][.places]<command>

The elements of the formatting command are described below.

Chapter 8

 Using Event Actions 68

- This left justifies the formatted value within the space
defined by the width element.

width This is the minimum width, in characters, which the
formatted text will occupy. If the formatted value
requires fewer characters than the minimum with, it
will be padded with spaces. If the value requires
more space, the minimum number of characters
necessary to show the value will be used.

places This is the number of decimal places which will be
used to format fixed point or scientific notation
values. If the places element is absent, the default
number of decimal places is 5.

command This controls which notation is to be used to display
the value as follows.

 f Fixed point
 e Scientific
 i Rounded to the nearest integer
 n Skip the associated value
 % A percent sign.
If any other character is used or there is no associated value in the
parameter list to format, the formatting command will be removed
from the message text and ignored.

Examples

Message(“A value %f”, ““, 50.92346); A value 50.92346

Message(“A value %.2e”, ““, 50.92346); A value 5.09E+01

Message(“A percentage %i%%”, ““, 50.92346); A percentage 51%

Message(“A weight %8.3fkg”, ““, 50.92346); A weight 50.923kg

Message(“A weight %-8.3fkg”, ““, 50.92346); A weight 50.923kg

Message(“Second value %n%i, ““, 1, 2); Second value 2

Chapter 8

Using Event Actions 69

EvaluateFunction

Purpose: To evaluate the specified list of DLL function.

Syntax: Evaluate Function (DLL_Function [,DLL_Function ...]);

Return Value: None.

See Also: EventDeactivate, EventQuery, EventProcess.

Comments: The event which uses this action must be universal,
global or be connected to each of the DLL functions
in the specified list by an influences.

Example: EvaluateFunction(Query_DataBase, Play_Tune);

EventActivate

Purpose: To activate the specified list of events.

Syntax: EventActivate (Event [, Event ...]);

Return Value: None.

See Also: EventDeactivate, EventQuery, EventProcess.

Comments: The event which uses this action must be universal,
global or be connected to each of the events in the
specified list by an influences.

 Activated events are included in the model run
calculations.

Example: EventActivate(Fertilizer_Event, Irrigation_Event,
Disease_Event);

EventDeactivate

Purpose: To deactivate the specified list of events.

Chapter 8

 Using Event Actions 70

Syntax: EventDeactivate (Event [, Event ...]);

Return Value: None.

See Also: EventActivate, EventQuery, EventProcess.

Comments: The event which uses this action must be universal,
global or be connected to each of the events in the
specified list by an influences.

 Deactivated events are not included in the model run
calculations.

Example: EventDeactivate(Infection_Event);

EventProcess

Purpose: To unconditionally process the actions of the
specified list of independent and component events.

Syntax: EventProcess (Event [, Event ...]);

Return Value: None.

See Also: EventActivate, EventDeactivate, EventQuery.

Comments: The event which uses this action must be global or be
connected to each of the events in the specified list by
an influences.

 EventQuery will process a specified event even if it is
deactivated.

Example: EventProcess(Harvest_Event);

EventQuery

Purpose: To evaluate the trigger condition for each the
specified list of component events. If any of the
events is triggered, its actions are processed.

Chapter 8

Using Event Actions 71

Syntax: EventQuery(Component_Event[,Component_Event
...]);

Return Value: None.

See Also: EventActivate, EventDeactivate, EventProcess.

Comments: All the specified events must be component events.

 The event which uses this action must be universal,
global or be connected to each of the events in the
specified list by an influences.

 EventQuery will evaluate a specified event even if it
is deactivated.

Example: EventQuery(Lake_Full_Event, Pollution_Event);

GetChoice

Purpose: To prompt the user to make a Yes/No choice using a
message box containing the specified formatted text.

Syntax: Component = GetChoice (“Message text”, “Title text”
[,Value ...]);

Return Value: Component = 1.0 if Yes is pressed.

 Component = 0.0 if No is pressed.

See Also: Message, GetValue, GetFileName.

Comments: The message box displayed contains three buttons:
Yes, No and Cancel. Pressing Yes or No will return
the values 1.0 or 0.0 respectively and allow the model
run to continue. Pressing Cancel stops the model run.

 The Message text and Title text fields can contain
both ordinary text and formatting commands which
define how the following values are displayed (see
Message Text Formatting earlier in this chapter).

Chapter 8

 Using Event Actions 72

Example: halt = GetChoice(“Total production has reached %.3f
tons on day %i. Do you want to halt
production?”,”Question”, produce, t);

GetFileName

Purpose: To prompt the user for a lookup file name using a
message box containing the specified formatted text.
If the entered file name exists and is a valid lookup
file, it is assigned to the defined lookup. The current
lookup file name is used as the default value.

Syntax: GetFileName (“Message text”, “Title text”,
Lookup_File [,Value ...]);

Return Value: If the entered file name is valid GetFileName assigns
the file name to the specified lookup file.

See Also: SetFileName, Message, GetChoice, GetValue,
GetPage.

Comments: The message box displayed contains three buttons:
OK, Find and Cancel. Pressing OK causes
ModelMaker to validate the file. If the file is valid, it
is assigned to the specified lookup file and the model
run continues. If the file is invalid, an error message
is displayed and the user prompted to enter another
file name. Pressing Find will invoke the Find File
dialog box and pressing Cancel stops the model run.

 The Message text and Title text fields can contain
both ordinary text and formatting commands which
define how the following values are displayed (see
Message Text Formatting earlier in this chapter).

Example: GetFileName(“Which data file is to be used for %i?”,
“Meteorological Data”, Met_data, 1993);

GetPage

Purpose: To prompt the user for a lookup table page number

Chapter 8

Using Event Actions 73

using a message box containing the specified
formatted text. If the entered page number exists, the
page becomes the active page defined for the lookup
table. The current lookup table page number is used
as the default value.

Syntax: GetPage (“Message text”, “Title text”, Lookup_Table
[,Value ...])

Return Value: If the entered page number is valid GetPage make the
page the active page of the specified lookup table.

See Also: QueryPage, SetPage.

Comments: The message box displayed contains two buttons: OK
and Cancel. Pressing OK causes ModelMaker to
validate the entered page number. If the page exists,
it become the active page for the specified lookup
table and the model run continues. If the page
number is invalid, an error message is displayed and
the user prompted to enter another page number.
Pressing Cancel stops the model run.

 The Message text and Title text fields can contain
both ordinary text and formatting commands which
define how the following values are displayed (see
Message Text Formatting earlier in this chapter).

Example: GetPage(“Which page of data is to be used for %i?”,
“Meteorological Data”, Met_data, 1993)

GetValue

Purpose: To prompt the user for a value by using a message
box containing the specified formatted text. If the
entered value satisfies the given validation condition,
it is assigned to the defined component. The current
value of the component is used as the default value.

Syntax: GetValue (“Message text”, “Title text”, Component,
Condition [,Value ...]);

Return Value: If the entered value is valid, GetValue assigns the

Chapter 8

 Using Event Actions 74

value to the component.

See Also: Message, GetChoice, GetFileName.

Comments: The message box displayed contains two buttons: OK
and Cancel. Pressing OK will cause ModelMaker to
evaluate the condition using the entered value. If the
condition is TRUE, the entered value is assigned to
the component specified by Value-component and
the model run continues. If the condition is FALSE,
an error message is displayed and the user prompted
to enter another value. Pressing Cancel stops the
model run.

 The Message text and Title text fields can contain
both ordinary text and formatting commands which
define how the following values are displayed (see
Message Text Formatting earlier in this chapter).

Example: GetValue(“The production rate cannot be greater
than %.2f. What should the new rate be?”,
“Production Rate”, rate, rate > 0 and rate <=
max_rate, max_rate);

Initialize

Purpose: To re-initialize the specified list of compartments,
defined values and delays.

Syntax: Initialize (Component [, Component ...]);

Return Value: None.

See Also: InitializeAll.

Comments: The equations for the initial value of the specified
compartments, defined values and delays will be
evaluated and the calculated values assigned to the
components. If an initial value equation references
the independent variable, the current value of the
independent variable will be used in the evaluation.

Chapter 8

Using Event Actions 75

Example Initialize(Fuel_load, Distance_traveled)

InitializeAll

Purpose: To re-initialize all the compartments, defined values
and delays for a model.

Syntax: InitializeAll;

Return Value: None.

See Also: Initialize.

Comments: The equations for the initial value of all the model’s
compartments, defined values and delays will be
evaluated and the calculated values assigned to the
components. If an initial value equation references
the independent variable, the current value of the
independent variable will be used in the evaluation.

Message

Purpose: To display a message box showing the specified
formatted text.

Syntax: Message (“Message text”, “Title text” [,Value...]);

Return Value: None.

See Also: GetChoice, GetValue, GetFileName.

Comments: The message box displayed contains two buttons: OK
and Cancel. Pressing OK will allow the model run to
continue. Pressing Cancel will stop the model run.

 The Message text and Title text fields can contain
both ordinary text and formatting commands which
define how the following values are displayed (see
Message Text Formatting earlier in this chapter).

Example: Message(“Entering stage %i at time %f”, “Warning”,

Chapter 8

 Using Event Actions 76

stage, t);

ModelExit

Purpose: To stop the model run generating an error message.

Syntax: ModelExit (Value);

Return Value: None.

See Also: ModelStop.

Comments: ModelMaker will stop the run of the model
generating an error message showing the run step
during which the action occurred, the event
responsible and the specified value. If optimization,
confidence interval calculation, sensitivity analysis or
repeated runs is being performed, the process will be
terminated.

Example: ModelExit(1);

ModelStop

Purpose: To stop the model run without generating an error
message.

Syntax: ModelStop

Return Value: None.

See Also: ModelExit.

Comments: ModelMaker will stop the run of the model without
causing an error. This means that if sensitivity
analysis or a repeated run is being performed, the
process will not be terminated.

ModelStop is not valid during model optimization,
minimization or confidence interval calculation. If a
ModelStop action is encountered, the process will be

Chapter 8

Using Event Actions 77

terminated with an appropriate error message.

QueryPage

Purpose: To return the number of the active page of the
specified lookup table.

Syntax: QueryPage(Lookup_Table);

Return Value: The number of the active page of the specified lookup
table.

See Also: GetPage, SetPage.

Example: page = QueryPage(Met_data);

SetPage

Purpose: To set the active page for the specified lookup table.

Syntax: SetPage(Lookup_Table, Value);

Return Value: If the specified page number is valid SetPage sets the
page as the active page for the specified lookup table.

See Also: GetPage, QueryPage.

Comments: ModelMaker attempts to load the page with resulting
number. If an error occurs the model run is
terminated with an appropriate error message.

Example: SetPage(Met_data, page_index);

SetFileName

Purpose: To set the file name for the specified lookup file.

Syntax: SetFileName(Lookup, “File name” [, Value]);

Return Value: If the specified file name is valid SetFileName assigns

Chapter 8

 Using Event Actions 78

the file name to the specified lookup file.

See Also: GetFileName.

Comments: ModelMaker formats the specified text (see Message
Text Formatting earlier in this chapter) and attempts
to load the file with resulting name. If an error occurs
the model run is terminated with an appropriate
error message.

Example: SetFileName(Met_data, “met%i.dat”, year);

TraceMessage

Purpose: To output a message containing the specified
formatted text to the configured trace file.

Syntax: TraceMessage (level, “Message text”, “Title text”
[,Value...]);

Return Value: None.

See Also: TraceOn, TraceOff.

Comments: If tracing is enabled and the specified trace level is
active, the formatted message text is output to the
configured trace file.

 The TraceMessage text field can contain both
ordinary text and formatting commands which
define how the following values are formatted (see
Message Text Formatting earlier in this chapter).

Example: TraceMessage(1, “Tital is %f at time %f”,
running_total, t);

TraceOff

Purpose: To turn the specified trace levels off.

Chapter 8

Using Event Actions 79

Syntax: TraceOff (level [, level]);

Return Value: None.

See Also: TraceMessage, TraceOn.

Comments: If tracing is enabled ModelMaker turns the specified
tracing levels off so that any TraceMessage actions
which specify any of the levels will be ignored and
not output to the configured trace file .

Example: TraceOff(1, 3, 5);

TraceOn

Purpose: To turn the specified trace levels on.

Syntax: TraceOn (level [, level]);

Return Value: None.

See Also: TraceMessage, TraceOff.

Comments: If tracing is enabled ModelMaker turns the specified
tracing levels on so that any TraceMessage actions
which specify any of the levels will be processed and
output to the configured trace file.

Appendix

Marquardt and Simplex theory 81

Appendix: Introduction to Marquardt
and Simplex Theory

Marquardt theory

Marquardt (also known as Levenberg–Marquardt) is the method of
first choice for non-linear regression, in the same way that Runge-
Kutta is the first choice for solving differential equations numerically.

Before briefly outlining the Marquardt method, it is worth reviewing
Taylor's series theory. This says that any function f(x) close to a given
point, x, can be approximated by the series

In our case the function of interest is χ2 as a function of the model’s
parameters a. There can be more than one adjustable parameter so a
is a vector (and therefore written in bold type) and (1) is re-written as

 (2)

where a is the vector of current model parameters (N of them)
 c is a constant, in fact χ2 at the minimum
 -d is a vector (N-long) representing the derivative of χ2 with

respect to the parameters a
 D is an N×N matrix of the double derivatives of χ2 with

respect to a (this is sometimes called the curvature matrix).

This is the Taylor expansion of the χ2 function. It is made a little
unpleasant by the vectors and matrices which arise because we can
adjust more than one parameter at a time.

....
2
1

)()(2
2

2

+∆+∆+≈∆+ x
dx

fd
x

dx
df

xfxxf (1)

aDaada ••+•−≈
2
1)(2 cχ

Appendix

 Marquardt and Simplex theory 82

Differentiating this we can obtain a relationship for the gradient of
the χ2 function

At the minimum of the χ2 function this will be zero

and at the current parameter values the gradient is

Subtracting these two equations eliminates d and reorganizing gives

Multiplying through by the inverse matrix D-1 we have

 (3)

Taking stock, this equation gives the parameters of the model, amin,
which have the smallest χ2, in terms of:

• acur, the current set of parameters that we have.
• D-1, the inverse of the curvature matrix D.
•)(cur

2 aχ∇ , the slope matrix for χ2 at the current values of the
parameters.

All of these terms are numerically obtainable, albeit after some
potentially considerable computing. However, all of this is based
upon an approximate Taylor expansion. This is only a good
approximation if we are near the minimum to begin with. If not then
the above expression is quite likely to give us a worse set of
parameters than we started with. In this situation an alternative is
required. One of the most popular is iterative steepest descent.

dDa −•=∇ 2χ

0=dDamin −•

dDaa curcur −•=∇)(2χ

)(2
curcurmin aDaDa χ∇−•≈•

)]([2
cur

1
curmin aDaa χ− ∇•−≈ −

)(2
curcurnext aaa χ∇×−= constant

Appendix

Marquardt and Simplex theory 83

 (4)

where the constant should be small enough to ensure that the
currently estimated slope does not run out.

Marquardt's method elegantly combines these two approaches so
that the optimization process can smoothly slide between equations
(3) and (4). This is done through the constant in equation (4), which is
set to be equal to the appropriate diagonal element of a matrix α
(defined below) and an overall constant λ. The change in the ith
parameter ai given by equation (4) is then

where α is a matrix closely related to the curvature matrix D,

Equation (3) is re-written substituting α for D.

 (5)

The key feature of this result is that λ, the scaling constant for the
gradient approach of equation (4), is included in the diagonal
elements of the matrix α. When λ>>1 α is diagonally dominant, and
applying equation (5) with α in place of D, the result is completely
equivalent to applying equation (4). Therefore by varying the value of
λ the Marquardt method can smoothly move between a direct
solution to the minimum and a gradient descent. When performing
an optimization run then the user can select the initial value of
lambda in the Optimization Settings dialog.

iii
i a

a
∂
∂χ

λα

21=∆

ijD

D

ijij

iiii

≠=

+=

2
1

)1(
2
1

α

λα

)]([2
cur

1
curmin aaa χα − ∇•−≈ −

Appendix

 Marquardt and Simplex theory 84

The simplex method

A simplex is a geometrical figure that in N dimensions has N+1
‘vertices’, so in two dimensions the simplex has 2 + 1 = 3 vertices and
is a triangle. In three dimensions it is a tetrahedron. Each dimension
represents a parameter whose value is to be adjusted. Simplex is used
in two areas in ModelMaker. The first is in optimizing a model and
the second is in minimizing a model component. In the former we are
minimizing the difference between observed and calculated values of
components. In the second we are minimizing the value of a single
component. In both cases the result is achieved by changing values of
parameters. What follows is a general discussion on the
implementation of Simplex minimization.

In minimization the simplex is applied in a very simple fashion. The
simplex is positioned by making an initial guess at the parameter
values. An initial guess is always required for multi-dimensional
minimization and optimization. In addition to an initial position, the
‘characteristic scale’ of the problem has to be guessed in order to give
the sides of the simplex a length. The component or error that is to be
minimized is evaluated at each of the simplex's corners. The corner
which has the highest value is moved through the opposite side to
create a new simplex and the process is repeated by contracting or
expanding the simplex as outlined below.

This can be illustrated with an example. Consider the calculation of y
which depends upon the values of the parameters a and b:

We make a guess for initial values of a and b in order to position the
first point of the simplex in the two-dimensional space (point x):

y f a b= (,)

Appendix

Marquardt and Simplex theory 85

To construct the other two points for the simplex, coordinates of
(a + ∆a, b) and (a, b + ∆b) are used as shown in the above diagram. In
ModelMaker the values of ∆a and ∆b are calculated using the value in
the fractional change field of the Advanced tab of the Minimization
Configuration dialog box. By default, the value used is 0.001, which
means that ∆a = 0.001 × a.

The function is then evaluated at each corner of the simplex and the
worst (i.e. the largest) point identified. This point is then reflected
through the opposite side of the simplex. Essentially this process is
repeated until the minimization is judged to have converged.
However, depending upon the value of the new corner the simplex
may have expanded or contracted. If the new corner is now the best,
the simplex is expanded in that direction by a factor of two. If it is the
worst, the simplex is contracted by a factor of two in that direction. If
it is still the worst, the simplex is contracted about the best corner.

In ModelMaker the process is judged to have converged when a
certain number (by default 5) of consecutive convergent steps have
occurred. A convergent step is one where the value being minimized
gets smaller, but only by a small amount (by default less than 10%).

aguess

a

bguess b

∆a

∆b ×

Index

Index 87

Index

A

Accuracy
and optimization termination

.......................................53
numerical28

Analysis of variance56
versus Q57

Argument (of a function)........28

B

Boolean expressions26
Bulirsch-Stoer........................35

C

Compartments
initial values.......................27

Component Shading...............22
Components

compartments
initial value27

parameters
constraint range..............53

Conditions26
relational operators.............26

Constraint range violation
(optimization)53, 54

Convergence
criteria52, 85

Cooling Schedule60
Curvature matrix..............81, 83

D

Deviation
measurement of51

Dialogs
descriptions8
list of....................................9

DLL functions........................61
DLL Functions

function information...........65
interface61
parameters..........................63
return value64

E

Equations
order of evaluation25
syntax.................................25

Error estimates (integration) ..36
Error scaling factor (integration)

..38
Errors

instrumental55
normality of........................54
underestimation of..............55

Event Actions.........................67
EvaluateFunction69
EventActivate.....................69
EventDeactivate69
EventProcess70
EventQuery70
GetChoice71
GetFileName72
GetPage..............................72
GetValue............................73
Initialize.............................74
InitializeAll........................75
Message75
ModelExit76
ModelStop..........................76
QueryPage77
SetFileName.......................77
SetPage77
text formatting67
TraceMessage.....................78
TraceOff.............................78
TraceOn79

Extended Least Squares..........51

Index

 Index 88

F

Functions, mathematical28
F-value...................................56

G

Gear's method35
reference31
step length..........................39

Goodness of fit
methods for assessing.........54

Grid
Model Options14

Grid Search............................58

I

Initial value (compartments) ..27
Integration

Bulirsch-Stoer method........35
choice of method40
error estimates....................36
error scaling factor38
Euler's method32
Gear's method35
Mid-point method33
Runge-Kutta method33
speed..................................39
step length

adjustment......................37
Bulirsch-Stoer38
control............................36
initial41
step halving36

Integration methods31
Interpolation43

method choice46
numerical methods

linear..............................45
polynomial45
rational function46

rule-based methods.............44
interval center44
interval end44
interval start44

K

Keyboard Shortcuts20

L

Lambda (Marquardt
optimization)......................83

Levenberg-Marquardt............See
Marquardt

License
end user.............................. iii

Linear interpolation45
Local minima

versus global50
Logical operators....................27

M

Marquardt
theory.................................81

Mathematical functions
list of..................................28

Menus
overview.............................. 3

Mid-point method33
Minima

local versus global50
Minimization

convergence criteria85
Model Components

events
actions............................67

ModelMaker window
description 3

N

Non-linear regression.............50
Normality of errors.................54
Numerical accuracy................28
Numerical overflow................53

O

Operators25
arithmetic...........................25
boolean...............................27

Index

Index 89

brackets..............................25
logical27
precedence25

Optimization..........................49
convergence criteria52
definition50
guidelines...........................57
lambda83
local versus global minima .58
Marquardt

theory81
measurement of deviation...51
non-linear regression..........50
normality of errors54
parameter constraints53
recipe52
RSS....................................51
termination53

Optimization Results
ELS....................................51

Optimization Statistics
view54

Order (polynomial interpolation)
..45

Overflow, numerical53

P

Parameter Estimation.............58
Parameters

constraint range53
constraint range violation...54

Password Protection9
Poles (rational functions)46
Polynomial interpolation45
P-value...................................56

Q

Quick reference guide4
Q-value55
Q-values

high55
low.....................................55

R

Rational function interpolation46
Reference

Integration methods............31
Interpolation.......................43
Optimization49

Regression, non-linear50
Relational operators26
Replicates...............................55
Residual Mean Square

definition............................52
Residual Sum of Squares51
r-squared value.......................56

low.....................................57
Runge-Kutta...........................33

S

Selecting components.............19
Simulated Annealing

definition............................59
Speed

calculation..........................39
Step halving (integration).......36
Step length (integration)

adjustment..........................37
control................................36

Sum of squares
weighted.............................56

T

Table Cells
selecting.............................23

Taylor's series81
Technical support.................. vii
Temperature Step

number of trials per59
Temperature Steps

max number59
Termination Criterion

Simulated Annealing..........60
Toolbars

customization 4
icon definitions.................... 4

Index

 Index 90

overview...............................3

U

User Codes.............................13

V

Variance

analysis of, versus Q...........57
Variance ratio56
Version information 9

W

Weighted sum of squares........56

